Answer:
Las diferencias entre lengua, lenguaje y habla, fundamentalmente, son las siguientes:
-Lengua: una lengua es un código dialéctico determinado, que consiste en determinados fonemas cuyos significados son entendidos por las personas que hablan dicha lengua o idioma. Es decir, se trata del código a través del cual se canalizan los mensajes entre las personas.
-Lenguaje: es el conjunto de significados que poseen las palabras que integran un idioma o lengua.
-Habla: es la capacidad que tienen los seres humanos de realizar la acción de comunicarse, a través de una lengua determinada, compartiendo un mismo lenguaje y los mismos códigos comunicativos entre sí.
Answer:
me lol
pls mark me brainliest :)
Explanation:
Answer:
i think it's better if you take a picture of the work so I can understand better, because right now I don't understand what I have to do to try and help you :)
Help please,,,,,,,,,,,
Afina-wow [57]
Answer:1.)A 2.)C 3.)A 4.)B 5.) A
Explanation:
Antonyms are opposite and Synonyms are the same meaning
I think that the question you are trying to ask is . . . A college student takes out a $7500 loan from a bank. What will the balance of the loan be after one year(assuming the student has not made any payments yet)
a. if bank charges 3.8% interest each year ?
b. if the bank charger 5.3% interest each year ?
Answer:
(a) $7785
(b) $7897.5
Step-by-step explanation:
Given:
Loan = $7500
We need to find the balance of the loan be after one year(assuming the student has not made any payments yet).
The formula for amount or loan is
A = P( 1 + r)^t .... (1)
where, P is principle, r is rate of interest and t is time in years.
(a) If bank charges 3.8% interest each year.
r = 3.8% = 0.038
Substitute P=7500, r=0.038 and t=1 in equation (1).
A = 7500 (1 + 0.038)^1
A = 7500 (1.038)
A = 7785
Therefore, the balance of the loan be after one year is $7785.
(b) If the bank charger 5.3% interest each year.
r = 5.3% = 0.053
Substitute P=7500, r=0.053 and t=1 in equation (1).
A = 7500 (1 + 0.053)^1
A = 7500 (1.053)
A = 7897.5
Therefore, the balance of the loan be after one year is $7897.5.