What is the simplest form of (5x-8)(2x+4)
1 answer:
Let's solve step by step
So all we need to do is simplify the equation
<span><span>(<span>5x − 8</span>)</span><span>(<span>2x + 4</span>)
</span></span><span>= <span><span>(<span>5x + −8</span>)</span><span>(<span>2x + 4</span>)
</span></span></span><span>= <span><span><span><span><span>(5x)</span><span>(2x) </span></span>+ <span><span>(5x)</span>(4) </span></span>+ <span><span>(−8)</span><span>(2x) </span></span></span>+ <span><span>(−8)</span><span>(4)
</span></span></span></span><span>= <span><span><span><span>10x^2 </span>+ 20x </span>− 16x </span>− 32
</span></span><span>= <span><span><span>10x^2 </span>+ 4x </span>− <span>32
Therefore the simplified form of this is </span></span></span>10x^2 + 4x − 32
Hope this helps! - Alyssa
(Please mark as Brianliest Answer, Thanks)
You might be interested in
Answer:
hopes this helps :]
The answer is a enlargement
Answer:
54
Step-by-step explanation:
![\frac{4}{3} \pi r^{3} =12\pi \\r=\sqrt[3]{9} \\surface area 4\pi r^{2} = 4\pi (\sqrt[3]{9} )^2=54.372 (3dp)](https://tex.z-dn.net/?f=%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20r%5E%7B3%7D%20%3D12%5Cpi%20%5C%5Cr%3D%5Csqrt%5B3%5D%7B9%7D%20%5C%5Csurface%20area%204%5Cpi%20r%5E%7B2%7D%20%3D%204%5Cpi%20%28%5Csqrt%5B3%5D%7B9%7D%20%29%5E2%3D54.372%20%283dp%29)
Answer:
c=0
Step-by-step explanation:
ATQ a.b=|a||b|sin(45)
1+c=sqrt(1+c^2)*sqrt(2)*1/sqrt(2)
1+c=sqrt(1+c^2)
(1+c)^2=(1+c^2)
2c=0, c=0
Cost of 6 sweets = 24p
so, cost of 1 sweet = 24p/6 = 4p
Now, cost of 5 sweets will be =4p*5 = 20p