A unicycle has 1 wheel. u unicycles have u wheels.
A bicycle has 2 wheels. b bicycles have 2b wheels.
In u unicycles and b bicycles, there are a total of
u + 2b wheels.
We are told there are 28 wheels, so u + 2b must equal 28.
The answer is choice C. u + 2b = 28
Answer:
Carbon dioxide is added to the atmosphere naturally when organisms respire or decompose (decay), carbonate rocks are weathered, forest fires occur, and volcanoes erupt. Carbon dioxide is also added to the atmosphere through human activities, such as the burning of fossil fuels and forests and the production of cement.
Step-by-step explanation:
Given that the first spinner has three equal sectors labelled 1, 2 and 3; and the second spinner has equal sectors labelled 3, 4, 5 and 6.
The number of possible outcomes that do not show a 1 on the first spinner is 2 (i.e. the first spinner shows 2 or 3).
The number of possible outcomes that the second spinner show the number 4 is 1 (i.e. the second spinner shows 4)
In probability, the word 'and' goes with multiplication.
Therefore, <span>the number of possible outcomes that do not show a 1 on the first spinner and show the number 4 on the second spinner</span> is given by 2 x 1 = 2 possible outcomes.
i.e. the first spinner shows the number 2 and the second spinner shows the number 4 or the first spinner shows the number 3 and the second spinner shows the number 4.
Answer:
Dont ask me
Step-by-step explanation:
Okay!!!!!
See the graph attached.
The midpoint rule states that you can calculate the area under a curve by using the formula:
![M_{n} = \frac{b - a}{2} [ f(\frac{x_{0} + x_{1} }{2}) + f(\frac{x_{1} + x_{2} }{2}) + ... + f(\frac{x_{n-1} + x_{n} }{2})]](https://tex.z-dn.net/?f=M_%7Bn%7D%20%3D%20%5Cfrac%7Bb%20-%20a%7D%7B2%7D%20%5B%20f%28%5Cfrac%7Bx_%7B0%7D%20%2B%20x_%7B1%7D%20%7D%7B2%7D%29%20%2B%20%20f%28%5Cfrac%7Bx_%7B1%7D%20%2B%20x_%7B2%7D%20%7D%7B2%7D%29%20%2B%20...%20%2B%20%20f%28%5Cfrac%7Bx_%7Bn-1%7D%20%2B%20x_%7Bn%7D%20%7D%7B2%7D%29%5D)
In your case:
a = 0
b = 1
n = 4
x₀ = 0
x₁ = 1/4
x₂ = 1/2
x₃ = 3/4
x₄ = 1
Therefore, you'll have:
![M_{4} = \frac{1 - 0}{4} [ f(\frac{0 + \frac{1}{4} }{2}) + f(\frac{ \frac{1}{4} + \frac{1}{2} }{2}) + f(\frac{\frac{1}{2} + \frac{3}{4} }{2}) + f(\frac{\frac{3}{4} + 1} {2})]](https://tex.z-dn.net/?f=M_%7B4%7D%20%3D%20%5Cfrac%7B1%20-%200%7D%7B4%7D%20%5B%20f%28%5Cfrac%7B0%20%2B%20%20%5Cfrac%7B1%7D%7B4%7D%20%7D%7B2%7D%29%20%2B%20%20f%28%5Cfrac%7B%20%5Cfrac%7B1%7D%7B4%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%7D%7B2%7D%29%20%2B%20%20f%28%5Cfrac%7B%5Cfrac%7B1%7D%7B2%7D%20%2B%20%5Cfrac%7B3%7D%7B4%7D%20%7D%7B2%7D%29%20%2B%20f%28%5Cfrac%7B%5Cfrac%7B3%7D%7B4%7D%20%2B%201%7D%20%7B2%7D%29%5D)
![M_{4} = \frac{1}{4} [ f(\frac{1}{8}) + f(\frac{3}{8}) + f(\frac{5}{8}) + f(\frac{7}{8})]](https://tex.z-dn.net/?f=M_%7B4%7D%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%5B%20f%28%5Cfrac%7B1%7D%7B8%7D%29%20%2B%20%20f%28%5Cfrac%7B3%7D%7B8%7D%29%20%2B%20%20f%28%5Cfrac%7B5%7D%7B8%7D%29%20%2B%20f%28%5Cfrac%7B7%7D%7B8%7D%29%5D)
Now, to evaluate your f(x), you need to look at the graph and notice that:
f(x) = x - x³
Therefore:
![M_{4} = \frac{1}{4} [(\frac{1}{8} - (\frac{1}{8})^{3}) + (\frac{3}{8} - (\frac{3}{8})^{3}) + (\frac{5}{8} - (\frac{5}{8})^{3}) + (\frac{7}{8} - (\frac{7}{8})^{3})]](https://tex.z-dn.net/?f=M_%7B4%7D%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%5B%28%5Cfrac%7B1%7D%7B8%7D%20-%20%28%5Cfrac%7B1%7D%7B8%7D%29%5E%7B3%7D%29%20%2B%20%28%5Cfrac%7B3%7D%7B8%7D%20-%20%28%5Cfrac%7B3%7D%7B8%7D%29%5E%7B3%7D%29%20%2B%20%28%5Cfrac%7B5%7D%7B8%7D%20-%20%28%5Cfrac%7B5%7D%7B8%7D%29%5E%7B3%7D%29%20%2B%20%28%5Cfrac%7B7%7D%7B8%7D%20-%20%28%5Cfrac%7B7%7D%7B8%7D%29%5E%7B3%7D%29%5D)
![M_{4} = \frac{1}{4} [(\frac{1}{8} - \frac{1}{512}) + (\frac{3}{8} - \frac{27}{512}) + (\frac{5}{8} - \frac{125}{512}) + (\frac{7}{8} - \frac{343}{512})]](https://tex.z-dn.net/?f=M_%7B4%7D%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%5B%28%5Cfrac%7B1%7D%7B8%7D%20-%20%5Cfrac%7B1%7D%7B512%7D%29%20%2B%20%28%5Cfrac%7B3%7D%7B8%7D%20-%20%5Cfrac%7B27%7D%7B512%7D%29%20%2B%20%28%5Cfrac%7B5%7D%7B8%7D%20-%20%5Cfrac%7B125%7D%7B512%7D%29%20%2B%20%28%5Cfrac%7B7%7D%7B8%7D%20-%20%5Cfrac%7B343%7D%7B512%7D%29%5D)
M₄ = 1/4 · (2 - 478/512)
= 0.2666
Hence, the <span>area of the region bounded by y = x³ and y = x</span> is approximately
0.267 square units.