Question 11a)
We are given side BC equals to side CE and angle CBA equals to angle CED
We also know that angle ACB equals to angle ECD are equal (opposite angles properties)
We have enough information to deduce that triangle ABC and triangle CDE are equal by postulate Angle-Side-Angle (ASA)
---------------------------------------------------------------------------------------------------------------
Question 11b)
We are given side AB equal to side ED, side BC equals to side EF, and side AC equals to side DF
We have enough information to deduce that triangle ABC and triangle DEF congruent by postulate Side-Side-Side (SSS)
----------------------------------------------------------------------------------------------------------------
Question 11c)
We are given side AC equals to side DF, angle ABC equals to angle DEF, and angle BAC equals to angle EDF
We have enough information to deduce that triangle ABC congruent to triangle DEF by postulate Angle-Side-Angle (ASA)
-----------------------------------------------------------------------------------------------------------------
Question 11d)
We do not have enough information to tell whether this shape congruent or not
Answer:
The boat traveling at 24 kph when John goes downstream.
Step-by-step explanation:
We are given the following in the question:
John has a boat that will travel at the rate of 15 kph in still water.
Let x be the speed of the current.
Speed of boat in upstream

Speed of water in downstream

Relation:

We have to find the speed of boat in downstream.
Time to travel upstream for 35 km = Time to travel 140 km downstream

Thus, speed of current is 9 kph.
Speed of boat in downstream = 15 + 9 = 24 kph.
Thus, the boat traveling at 24 kph when John goes downstream.
Answer:
The two numbers are 36 (62) and 49 (72).
Step-by-step explanation:
The answer is -2y•(2y^4 - 3y^2 - 4y + 1)
Answer:
b)-15 ÷ 5
It's the only one that ends up with a negative answer, which makes sense because the temperature decreases