Think about it this way, that for every 5/6 pound bag you are losing 1/6 and 1/6*12=2 therefore the answer is 12
Im not 100 percent positive that this is correct but I think the answer is
184
∠ M ≅ ∠ R: true
<span>VL ≅ LT: true
</span><span>Δ MLV can be rotated about point L to map it to Δ RLT. : false
</span><span>A series of rigid transformations of Δ MLV maps it to Δ RLT. : true </span>
I didn't mean to post the answer and can't figure out how to take it down. Somebody report it so it does go down and the question can be later answered. Thank you
Answer:
Step-by-step explanation:
Given that,
y' = 17y ( 1-y^7)
Let y=1
Then, y' = 0 for all t
Then show that it is the only stable equilibrium point so that as y→1, t→∞ with any initial value.
So, the graph solution will be
y(0) = 1 and this will be an horizontal line
If, y(0) > 1 then, y' < 0 by inspecting the first equation, so the graph is has decreasing solution.
Likewise, if y(0) < 1 then, y' > 0 and the graph is increasing.
So no matter the initial condition, graph of the solution will be asymptotic to the horizontal line above.
This make the limit be 1.
This shows that x = 1 is a stable equilibrium.