Answer:
The length of the longer ladder is 35 ft
Step-by-step explanation:
Please check the attachment for a diagrammatic representation of the problem
We want to calculate the length of the longer ladder ;
We make reference to the diagram
Since the two right triangles formed are similar. the ratios of their sides are equal;
Thus;
20/15 = 28/x + 15
20(x + 15) = 15(28)
20x + 300 = 420
20x = 420-300
20x = 120
x = 120/20
x = 6
So we want to calculate the hypotenuse of a right triangle with other sides 28ft and 21 ft
To do this, we use the Pythagoras’ theorem which states that square of the hypotenuse equals the sum of the squares of the two other sides
Let the hypotenuse be marked x
x^2 = 28^2 + 21^2
x^2 = 1,225
x = √1225
x = 35 ft
Answer:
P____Q____R
PR= PQ+ QR
(14x-13) = (5x-2)+(6x+1)
14x-13= 11x – 1
14x – 11x = 13–1
3x = 12
x= 12/ 3
x= 4
PR= 14x – 13 = 14 (4) – 13 = 18 – 13= 5
If you want (PQ , QR ) this is the solution
PQ =5x-2=5(4)-2=20-2=18
QR =6x+1=6(4)+1=24+1=25
I hope I helped you^_^
Answer:
(44)₁₆
Step-by-step explanation:
to convert it into hexa decimal we have select four pair of binary digit
(1000100)₂→(?)₁₆
<u> 100</u> <u>0100</u>
to solve this we have to no the decimal conversion of
0100 which is '4'
so,
conversion of (1000100)₂→(44)₁₆
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Distributive Property
<u>Algebra I</u>
- Terms/Coefficients
- Factoring
<u>Calculus</u>
Derivatives
Derivative Notation
Derivative of a constant is 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
y = (3x - 1)⁵(4 - x⁴)⁵
<u>Step 2: Differentiate</u>
- Product Rule:
^5 + (3x - 1)^5\frac{d}{dx}[(4 - x^4)^5]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%283x%20-%201%29%5E5%5D%284%20-%20x%5E4%29%5E5%20%2B%20%283x%20-%201%29%5E5%5Cfrac%7Bd%7D%7Bdx%7D%5B%284%20-%20x%5E4%29%5E5%5D)
- Chain Rule [Basic Power Rule]:
![\displaystyle y' =[5(3x - 1)^{5-1} \cdot \frac{d}{dx}[3x - 1]](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^{5-1} \cdot \frac{d}{dx}[(4 - x^4)]]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%5B5%283x%20-%201%29%5E%7B5-1%7D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B3x%20-%201%5D%5D%284%20-%20x%5E4%29%5E5%20%2B%20%283x%20-%201%29%5E5%5B5%284%20-%20x%5E4%29%5E%7B5-1%7D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%284%20-%20x%5E4%29%5D%5D)
- Simplify:
![\displaystyle y' =[5(3x - 1)^4 \cdot \frac{d}{dx}[3x - 1]](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot \frac{d}{dx}[(4 - x^4)]]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%5B5%283x%20-%201%29%5E4%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B3x%20-%201%5D%5D%284%20-%20x%5E4%29%5E5%20%2B%20%283x%20-%201%29%5E5%5B5%284%20-%20x%5E4%29%5E4%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%284%20-%20x%5E4%29%5D%5D)
- Basic Power Rule:
^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot -4x^{4-1}]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%5B5%283x%20-%201%29%5E4%20%5Ccdot%203x%5E%7B1%20-%201%7D%5D%284%20-%20x%5E4%29%5E5%20%2B%20%283x%20-%201%29%5E5%5B5%284%20-%20x%5E4%29%5E4%20%5Ccdot%20-4x%5E%7B4-1%7D%5D)
- Simplify:
^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot -4x^3]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%5B5%283x%20-%201%29%5E4%20%5Ccdot%203%5D%284%20-%20x%5E4%29%5E5%20%2B%20%283x%20-%201%29%5E5%5B5%284%20-%20x%5E4%29%5E4%20%5Ccdot%20-4x%5E3%5D)
- Multiply:

- Factor:
![\displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 3(4 - x^4) - 4x^3(3x - 1) \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%205%283x-1%29%5E4%284%20-%20x%5E4%29%5E4%5Cbigg%5B%203%284%20-%20x%5E4%29%20-%204x%5E3%283x%20-%201%29%20%5Cbigg%5D)
- [Distributive Property] Distribute 3:
![\displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 12 - 3x^4 - 4x^3(3x - 1) \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%205%283x-1%29%5E4%284%20-%20x%5E4%29%5E4%5Cbigg%5B%2012%20-%203x%5E4%20-%204x%5E3%283x%20-%201%29%20%5Cbigg%5D)
- [Distributive Property] Distribute -4x³:
![\displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 12 - 3x^4 - 12x^4 + 4x^3 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%205%283x-1%29%5E4%284%20-%20x%5E4%29%5E4%5Cbigg%5B%2012%20-%203x%5E4%20-%2012x%5E4%20%2B%204x%5E3%20%5Cbigg%5D)
- [Brackets] Combine like terms:

- Factor:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e