1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lina2011 [118]
3 years ago
7

Click to select the correct answers. Click again to unselect answers. Leave the incorrect answers unselected.

Mathematics
1 answer:
Setler79 [48]3 years ago
8 0

Answer:

g(x) = 5x + 2.

r(x) = x

b(x) = 1/2 x³

k(x) = - 3 x + 1

Step-by-step explanation:

The function notation ⇒ it is the form to write the function, It is meant to be a precise way of giving information about the function, like f(x) , v(x) and so on.

Given the following:

g(x) = 5x + 2.

y = 1 x

h = x²

r(x) = x

f/x = x⁵ - 3

b(x) = 1/2 x³

p/x = -7x

k(x) = - 3 x + 1

y = mx + b

fx = -x³ + 4

So, in the given options the following are in function notations:

g(x) = 5x + 2.

r(x) = x

b(x) = 1/2 x³

k(x) = - 3 x + 1

You might be interested in
Two ladders are leaning against a building, forming two similar triangles as shown below. The top of the longer ladder is 28 fee
postnew [5]

Answer:

The length of the longer ladder is 35 ft

Step-by-step explanation:

Please check the attachment for a diagrammatic representation of the problem

We want to calculate the length of the longer ladder ;

We make reference to the diagram

Since the two right triangles formed are similar. the ratios of their sides are equal;

Thus;

20/15 = 28/x + 15

20(x + 15) = 15(28)

20x + 300 = 420

20x = 420-300

20x = 120

x = 120/20

x = 6

So we want to calculate the hypotenuse of a right triangle with other sides 28ft and 21 ft

To do this, we use the Pythagoras’ theorem which states that square of the hypotenuse equals the sum of the squares of the two other sides

Let the hypotenuse be marked x

x^2 = 28^2 + 21^2

x^2 = 1,225

x = √1225

x = 35 ft

7 0
2 years ago
Solve If QR = 6x + 1, PR = 14x - 13, and PQ = 5x - 2, find PR
solong [7]

Answer:

P____Q____R

PR= PQ+ QR

(14x-13) = (5x-2)+(6x+1)

14x-13= 11x – 1

14x – 11x = 13–1

3x = 12

x= 12/ 3

x= 4

PR= 14x – 13 = 14 (4) – 13 = 18 – 13= 5

If you want (PQ , QR ) this is the solution

PQ =5x-2=5(4)-2=20-2=18

QR =6x+1=6(4)+1=24+1=25

I hope I helped you^_^

7 0
3 years ago
A small pouch contains 8 black marbles, 5 white marbles, and 12 red marbles. What is the probability of picking a red then a bla
Alina [70]

Answer:

8/600

Step-by-step explanation:

4 0
3 years ago
Convert 1000100 two to base sixteen
Shalnov [3]

Answer:

(44)₁₆

Step-by-step explanation:

to convert it into hexa decimal we have select four pair of binary digit

(1000100)₂→(?)₁₆

 <u> 100</u>  <u>0100</u>

to solve this we have to no the decimal conversion of

0100 which is '4'

so,

conversion of (1000100)₂→(44)₁₆

4 0
3 years ago
Differentiate the function. y = (3x - 1)^5(4-x^4)^5​
TiliK225 [7]

Answer:

\displaystyle y' = -5(3x-1)^4(4 - x^4)^4(15x^4 - 4x^3 - 12)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Distributive Property

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                                \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

y = (3x - 1)⁵(4 - x⁴)⁵

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                    \displaystyle y' = \frac{d}{dx}[(3x - 1)^5](4 - x^4)^5 + (3x - 1)^5\frac{d}{dx}[(4 - x^4)^5]
  2. Chain Rule [Basic Power Rule]:                                                                       \displaystyle y' =[5(3x - 1)^{5-1} \cdot \frac{d}{dx}[3x - 1]](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^{5-1} \cdot \frac{d}{dx}[(4 - x^4)]]
  3. Simplify:                                                                                                             \displaystyle y' =[5(3x - 1)^4 \cdot \frac{d}{dx}[3x - 1]](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot \frac{d}{dx}[(4 - x^4)]]
  4. Basic Power Rule:                                                                                             \displaystyle y' =[5(3x - 1)^4 \cdot 3x^{1 - 1}](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot -4x^{4-1}]
  5. Simplify:                                                                                                             \displaystyle y' =[5(3x - 1)^4 \cdot 3](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot -4x^3]
  6. Multiply:                                                                                                             \displaystyle y' = 15(3x - 1)^4(4 - x^4)^5 - 20x^3(3x - 1)^5(4 - x^4)^4
  7. Factor:                                                                                                               \displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 3(4 - x^4) - 4x^3(3x - 1) \bigg]
  8. [Distributive Property] Distribute 3:                                                                 \displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 12 - 3x^4 - 4x^3(3x - 1) \bigg]
  9. [Distributive Property] Distribute -4x³:                                                            \displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 12 - 3x^4 - 12x^4 + 4x^3 \bigg]
  10. [Brackets] Combine like terms:                                                                       \displaystyle y' = 5(3x-1)^4(4 - x^4)^4(-15x^4 + 4x^3 + 12)
  11. Factor:                                                                                                               \displaystyle y' = -5(3x-1)^4(4 - x^4)^4(15x^4 - 4x^3 - 12)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

6 0
3 years ago
Other questions:
  • Does anyone know im not sure lol
    10·2 answers
  • Use similar triangles to solve the problem. A flagpole casts a shadow of 35 ft, Nearby, a 9-ft tree casts a shadow of 7 ft. What
    10·1 answer
  • Y=5x+3 which orderd pair works for the rule<br><br> A. (4,23)<br><br> B. (3,14)<br><br> C. (5,3)
    10·1 answer
  • Marcie wants to enclose her yard with a fence. Her yard is in the shape of a rectangle attached to a triangle. The formula for t
    5·2 answers
  • What is the value of the expression 10 25 32 64​
    8·2 answers
  • HELP! I need to pass this test
    7·1 answer
  • Plzzz help hurry !!!
    11·2 answers
  • Expontential function f f(x) = a*b^x<br><br> x f(x)<br> 0 5<br> 1 8<br><br> f(x) =
    6·1 answer
  • 4. The length of a rectangle is 4 more than its width. The perimeter of the rectangle is 60cm.
    12·1 answer
  • Please help answer this question also with explanation
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!