Answer:
Step-by-step explanation:
Given that:
The differential equation; ![(x^2-4)^2y'' + (x + 2)y' + 7y = 0](https://tex.z-dn.net/?f=%28x%5E2-4%29%5E2y%27%27%20%2B%20%28x%20%2B%202%29y%27%20%2B%207y%20%3D%200)
The above equation can be better expressed as:
![y'' + \dfrac{(x+2)}{(x^2-4)^2} \ y'+ \dfrac{7}{(x^2- 4)^2} \ y=0](https://tex.z-dn.net/?f=y%27%27%20%2B%20%5Cdfrac%7B%28x%2B2%29%7D%7B%28x%5E2-4%29%5E2%7D%20%5C%20y%27%2B%20%5Cdfrac%7B7%7D%7B%28x%5E2-%204%29%5E2%7D%20%5C%20y%3D0)
The pattern of the normalized differential equation can be represented as:
y'' + p(x)y' + q(x) y = 0
This implies that:
![p(x) = \dfrac{(x+2)}{(x^2-4)^2} \](https://tex.z-dn.net/?f=p%28x%29%20%3D%20%5Cdfrac%7B%28x%2B2%29%7D%7B%28x%5E2-4%29%5E2%7D%20%5C)
![p(x) = \dfrac{(x+2)}{(x+2)^2 (x-2)^2} \](https://tex.z-dn.net/?f=p%28x%29%20%3D%20%5Cdfrac%7B%28x%2B2%29%7D%7B%28x%2B2%29%5E2%20%28x-2%29%5E2%7D%20%5C)
![p(x) = \dfrac{1}{(x+2)(x-2)^2}](https://tex.z-dn.net/?f=p%28x%29%20%3D%20%5Cdfrac%7B1%7D%7B%28x%2B2%29%28x-2%29%5E2%7D)
Also;
![q(x) = \dfrac{7}{(x^2-4)^2}](https://tex.z-dn.net/?f=q%28x%29%20%3D%20%5Cdfrac%7B7%7D%7B%28x%5E2-4%29%5E2%7D)
![q(x) = \dfrac{7}{(x+2)^2(x-2)^2}](https://tex.z-dn.net/?f=q%28x%29%20%3D%20%5Cdfrac%7B7%7D%7B%28x%2B2%29%5E2%28x-2%29%5E2%7D)
From p(x) and q(x); we will realize that the zeroes of (x+2)(x-2)² = ±2
When x = - 2
![\lim \limits_{x \to-2} (x+ 2) p(x) = \lim \limits_{x \to2} (x+ 2) \dfrac{1}{(x+2)(x-2)^2}](https://tex.z-dn.net/?f=%5Clim%20%5Climits_%7Bx%20%5Cto-2%7D%20%28x%2B%202%29%20p%28x%29%20%3D%20%20%5Clim%20%5Climits_%7Bx%20%5Cto2%7D%20%28x%2B%202%29%20%5Cdfrac%7B1%7D%7B%28x%2B2%29%28x-2%29%5E2%7D)
![\implies \lim \limits_{x \to2} \dfrac{1}{(x-2)^2}](https://tex.z-dn.net/?f=%5Cimplies%20%20%5Clim%20%5Climits_%7Bx%20%5Cto2%7D%20%20%5Cdfrac%7B1%7D%7B%28x-2%29%5E2%7D)
![\implies \dfrac{1}{16}](https://tex.z-dn.net/?f=%5Cimplies%20%5Cdfrac%7B1%7D%7B16%7D)
![\lim \limits_{x \to-2} (x+ 2)^2 q(x) = \lim \limits_{x \to2} (x+ 2)^2 \dfrac{7}{(x+2)^2(x-2)^2}](https://tex.z-dn.net/?f=%5Clim%20%5Climits_%7Bx%20%5Cto-2%7D%20%28x%2B%202%29%5E2%20q%28x%29%20%3D%20%20%5Clim%20%5Climits_%7Bx%20%5Cto2%7D%20%28x%2B%202%29%5E2%20%5Cdfrac%7B7%7D%7B%28x%2B2%29%5E2%28x-2%29%5E2%7D)
![\implies \lim \limits_{x \to2} \dfrac{7}{(x-2)^2}](https://tex.z-dn.net/?f=%5Cimplies%20%20%5Clim%20%5Climits_%7Bx%20%5Cto2%7D%20%20%5Cdfrac%7B7%7D%7B%28x-2%29%5E2%7D)
![\implies \dfrac{7}{16}](https://tex.z-dn.net/?f=%5Cimplies%20%5Cdfrac%7B7%7D%7B16%7D)
Hence, one (1) of them is non-analytical at x = 2.
Thus, x = 2 is an irregular singular point.
Answer:
2x + 4y = 16.
Step-by-step explanation:
14x - 7y = 8
Convert to slope-intercept form:
-7y = -14x + 8
y = 2x - 8/7
The slope is 2 so the line perpendicular to it has a slope of -1/2, so we have:
y = 1/2x + c
This line passes through the point (-2, 5) so:
5 = -1/2* (-2) + c
5 = 1 + c
c = 5 - 1 = 4
So our equation is y = -1/2x + 4.
Convert to standard from
4y = -2x + 16
2x + 4y = 16.
Answer:
Mizuki is here to help! The answer is 8!
Step-by-step explanation:
5 + 30 ÷ 10 =
5 + 3 =
8
Remember PEMDAS!
Answer:
the number of female teachers is 616
Step-by-step explanation:
male 2: 112
Female 11 : x
now you want to find x which is the number of female teachers
multiply 11 with 112 and 2 with x
11 x 112= 2x
divide 2
1 232 = 2x/2
616 = x
Hope that help :)