81÷10
80÷10=8 and 1/10. As a result, the mix number is 8 1/10. Hope it help!
Answer:
At a combined speed of 6 in/min, it takes us 24 mins to clean the wall
Step-by-step explanation:
Since the question did not provide the speed with which each student cleans, we can make assumptions. This is so that we can solve the question before us
Assuming student 1 cleans at a speed of 2 inches per minute, student 2 cleans at a speed of 2½ inches per minute & student 3 cleans at a speed of 1½ inches per minute.
Let's list the parameters we have:
Height of wall (h) = 12 ft, Speed (student 1) = 2 in/min, Speed (student 2) = 2½ in/min, Speed (student 3) = 1½ in/min
Speed of cleaning wall = Height of wall ÷ Time to clean wall
Time to clean wall (t) = Height of wall ÷ Speed of cleaning wall
since students 1, 2 and 3 are working together, we will add their speed together; v = (2 + 2½ + 1½) = 6 in/min
1 ft = 12 in
Time (t) = h ÷ v = (12 * 12) ÷ 6 = 144 ÷ 6
Time (t) = 24 mins
The answers is A because it shows the domain: 0 is less than or equal to x and less that on equal to 60
Step-by-step explanation:
The value of sin(2x) is \sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15
How to determine the value of sin(2x)
The cosine ratio is given as:
\cos(x) = -\frac 14cos(x)=−
4
1
Calculate sine(x) using the following identity equation
\sin^2(x) + \cos^2(x) = 1sin
2
(x)+cos
2
(x)=1
So we have:
\sin^2(x) + (1/4)^2 = 1sin
2
(x)+(1/4)
2
=1
\sin^2(x) + 1/16= 1sin
2
(x)+1/16=1
Subtract 1/16 from both sides
\sin^2(x) = 15/16sin
2
(x)=15/16
Take the square root of both sides
\sin(x) = \pm \sqrt{15/16
Given that
tan(x) < 0
It means that:
sin(x) < 0
So, we have:
\sin(x) = -\sqrt{15/16
Simplify
\sin(x) = \sqrt{15}/4sin(x)=
15
/4
sin(2x) is then calculated as:
\sin(2x) = 2\sin(x)\cos(x)sin(2x)=2sin(x)cos(x)
So, we have:
\sin(2x) = -2 * \frac{\sqrt{15}}{4} * \frac 14sin(2x)=−2∗
4
15
∗
4
1
This gives
\sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15
Solutions
1hr = 60 min
180 ÷ 60 = 3
<span>180 min = 3 hrs </span>