Answer:
Yes there is sufficient evidence to reject the company's evidence
Step-by-step explanation:
From the question we are told that
The sample size is n = 25
The mean is
The standard deviation is 
The z-score is z = -1.94
The null hypothesis is 
The alternative hypothesis is 
Generally the p-value is mathematically evaluated as

From the z table the area under the normal curve to the left corresponding to -1.94 is

=> 
=> 
Let assume the level of significance is 
Hence the
this mean that
The decision rule is
Fail to reject the null hypothesis
The conclusion is
There is sufficient evidence to reject the company's evidence
The trapezoidal approximation will be the average of the left- and right-endpoint approximations.
Let's consider a simple example of estimating the value of a general definite integral,

Split up the interval
![[a,b]](https://tex.z-dn.net/?f=%5Ba%2Cb%5D)
into

equal subintervals,
![[x_0,x_1]\cup[x_1,x_2]\cup\cdots\cup[x_{n-2},x_{n-1}]\cup[x_{n-1},x_n]](https://tex.z-dn.net/?f=%5Bx_0%2Cx_1%5D%5Ccup%5Bx_1%2Cx_2%5D%5Ccup%5Ccdots%5Ccup%5Bx_%7Bn-2%7D%2Cx_%7Bn-1%7D%5D%5Ccup%5Bx_%7Bn-1%7D%2Cx_n%5D)
where

and

. Each subinterval has measure (width)

.
Now denote the left- and right-endpoint approximations by

and

, respectively. The left-endpoint approximation consists of rectangles whose heights are determined by the left-endpoints of each subinterval. These are

. Meanwhile, the right-endpoint approximation involves rectangles with heights determined by the right endpoints,

.
So, you have


Now let

denote the trapezoidal approximation. The area of each trapezoidal subdivision is given by the product of each subinterval's width and the average of the heights given by the endpoints of each subinterval. That is,

Factoring out

and regrouping the terms, you have

which is equivalent to

and is the average of

and

.
So the trapezoidal approximation for your problem should be
What you would have to do is take the 18 and double it because 50% doubled is 100% so when you double 18 it is 36