9514 1404 393
Answer:
a) The new triangle is a reflection of the original across the origin. All angles, segment lengths, and line slopes have been preserved: the transformed triangle is congruent with the original.
b) The new triangle is a reflection of the original across the origin and a dilation by a factor of 2. Angles have been preserved: the transformed triangle is similar to the original. The transformation is NOT rigid.
Step-by-step explanation:
1. The transformed triangle is blue in the attachment. It is congruent with the original. The transformation is "rigid," a reflection across the origin. All angles and lengths have been preserved, as well as line slopes.
__
2. The transformed triangle is orange in the attachment. It is similar to the original, in that angles have been preserved and lengths are proportional. It is a reflection across the origin and a dilation by a factor of 2. Line slopes have also been preserved. A dilation is NOT a "rigid" transformation.
Answer:
(0.084,0.396)
Step-by-step explanation:
The 99% confidence interval for the proportion of customers who use debit card monthly can be constructed as










By rounding to three decimal places we get,

The 99% confidence interval for the proportion of customers who use debit card monthly is (0.084,0.396).
After you solve it you get B
Answer:
Step-by-step explanation:
Acute angle
By using trigonometric relations, we will see that:
AC = 15.6 in
AB = 8.4 in.
<h3>
How to get the measures of the other two sides of the right triangle?</h3>
Here we have the right triangle where:
B = 90°
C = 40°
BC = 10 in.
Notice that is the adjacent cathetus to the angle C, then we can use the two relations:
- sin(a) = (adjacent cathetus)/(hypotenuse).
- tan(a) = (opposite cathetus)/(adjacent cathetus).
Where:
- hypotenuse = AC
- opposite cathetus = AB.
Then we will have:
sin(40°) = 10in/AC.
AC = 10in/sin(40°) = 15.6 in
tan(40°) = AB/10in
tan(40°)*10in = AB = 8.4 in.
So we can conclude that for the given right triangle we have:
AC = 15.6 in
AB = 8.4 in.
If you want to learn more about right triangles:
brainly.com/question/2217700
#SPJ1