Since the beaker was heated we can asume that only magnesium cloride is left in the beaker, therfore the difference between the beaker with magnesium chloride and the empty beaker give the mass of magnisium chloride:
Seafloor spreading is the answer to your question.
The partial stress of H2 is 737.47 mmHg Let's observe the Ideal Gas Law to find out the whole mols.
We count on that the closed vessel has 1L of volume
- P.V=n.R.T
- We must convert mmHg to atm. 760 mmHg.
- 1 atm
- 755 mmHg (755/760) = 0.993 atm
- 0.993 m.1L=n.0.082 L.atm/mol.K .
- 293 K(0.993 atm 1.1L)/(0.082mol.K /L.atm).
- 293K = n
- 0.0413mols = n
These are the whole moles. Now we are able to know the moles of water vapor, to discover the molar fraction of it.
- P.V=n.R.T
- 760 mmHg. 1 atm
- 17.5 mmHg (17.5 mmHg / 760 mmHg)=0.0230 atm
- 0.0230 m.1L=n.0.082 L.atm/mol.K.293 K(0.0230atm.1L)/(0.082mol.K/L.atm .293K)=n 9.58 × 10 ^ 4 mols = n.
- Molar fraction = mols )f gas/general mols.
- Molar fraction water vapor =9.58×10^ -four mols / 0.0413 mols
- Sum of molar fraction =1
- 1 - 9.58 × 10 ^ 4 × mols / 0.0413 ×mols = molar fraction H2
- 0.9767 = molar fraction H2
- H2 pressure / Total pressure =molar fraction H2
- H2 pressure / 55mmHg = =0.9767 0.9767 = h2 pressure =755 mmHg.
- 737,47 mmHg.
<h3>What is a mole fraction?</h3>
Mole fraction is a unit of concentration, described to be identical to the variety of moles of an issue divided through the whole variety of moles of a solution. Because it's miles a ratio, mole fraction is a unitless expression.
Thus it is clear that the partial pressure of H2 is 737,47 mmHg.
To learn more about partial pressure refer to the link :
brainly.com/question/19813237
<h3 />
<u>Answer:</u> The partial pressure of ammonia is 0.464 atm
<u>Explanation:</u>
For the given chemical equation:

Initial: 1
At eqllm: 1-x x x
The expression for
for the following equation is:

The partial pressures of solids and liquids are taken as 1 in the equilibrium expression.
We are given:

Putting values in above equation, we get:

Hence, the partial pressure of ammonia is 0.464 atm