Looks like a badly encoded/decoded symbol. It's supposed to be a minus sign, so you're asked to find the expectation of 2<em>X </em>² - <em>Y</em>.
If you don't know how <em>X</em> or <em>Y</em> are distributed, but you know E[<em>X</em> ²] and E[<em>Y</em>], then it's as simple as distributing the expectation over the sum:
E[2<em>X </em>² - <em>Y</em>] = 2 E[<em>X </em>²] - E[<em>Y</em>]
Or, if you're given the expectation and variance of <em>X</em>, you have
Var[<em>X</em>] = E[<em>X</em> ²] - E[<em>X</em>]²
→ E[2<em>X </em>² - <em>Y</em>] = 2 (Var[<em>X</em>] + E[<em>X</em>]²) - E[<em>Y</em>]
Otherwise, you may be given the density function, or joint density, in which case you can determine the expectations by computing an integral or sum.
Answer:
No extraneous solution
Step-by-step explanation:
We have the logarithmic equation given by,
![\log_{2}[\log_{2}(\sqrt{4x})]=1](https://tex.z-dn.net/?f=%5Clog_%7B2%7D%5B%5Clog_%7B2%7D%28%5Csqrt%7B4x%7D%29%5D%3D1)
i.e. 
i.e. 
i.e. 
i.e. 
i.e. 
i.e. 
So, the solution of the given equation is x=4.
Now, as we domain of square root function is x > 0 and also, the domain of logarithmic function is
.
Therefore, the domain of the given function is x > 0.
We know that the extraneous solution is the solution which does not belong to the domain.
But as x=4 belongs to the domain x > 0.
Thus, x = 4 is not an extraneous solution.
Hence, this equation does not have any extraneous solution.
Answer:
i think the answer is one of the two answers $16 or $20.50. Sorry if it is wronge.
Given that <span>the number of possible handshakes within a group of n people is given by the equation:
</span>

<span>
Given that there are 105 people at a party, the number of possible handshakes is given by:
</span>

<span>
</span>
Answer:
Step-by-step explanation:
In costing analysis, direct materials, labour and direct expenses aggregate to prime cost. Alternately, the aggregate of indirect materials, labour and expenses is termed as overhead. Overheads are classified into fixed and variable.
Variable overhead is one which varies directly as per number of units produced
Variable overhead rate variance = actual costs -(AHxSR)
= Actual costs - (Actual hours x std rate)
= Actual hours x actual rate - actual hours x std rate
Hence option D is right.