The pressure at the depth h in the ocean is given by (Stevin's law)

where

is the atmospheric pressure
and

is the pressure exerted by the column of water of height h=4267 m, with

being the water density and

.
Substituting, we find

We want to convert this into atmospheres: we know that 1 atm corresponds to the atmospheric pressure at sea level, so

, therefore we just need to divide by this number:
The equilibrium constant of the reaction at 25⁰c will be 426827.5.
<u />
<u>Equilibrium constant</u> :The equilibrium constant comes from the chemical equilibrium law. For the chemical equilibrium state, at a fixed constant temperature, the ratio of the product of the reaction's multiplication to the concentration of its reactants' multiplication, and each is raised to the power to the corresponding coefficients of the elements in the reaction.
The chemical equilibrium is given by for a general chemical reaction.
a. A+ b. B ⇌ c. C+ d. D,.
Kc =[C]c [D]d/[A]a [B]b.
<u>Gibb's free energy</u> :The second law of thermodynamics can be arranged in such a way that it gives a new expression when a chemical reaction happens at a constant temperature and constant pressure.
G=H-TS
T=25⁰c
G=51.4 x 10³J

k= equilibrium constant ,G=Gibbs free energy ,n= no. of moles ,R=Gas constant ,T=temperature ,Z=compressibility


k=51.4 x 10³ x 8.3 + 8.3 x 25
k=426827.5
To learn equilibrium constant-
<u>brainly.com/question/19669218</u>
#SPJ4
Answer:
i know the questin but i got to try and find it
Explanation:
Answer:
D. High frequency and short wavelengths.
Explanation:
If a wave is high in energy it will have a higher frequency.
High frequency = short wavelengths