Answer:
It cannot be constant because if it does not change and each time it increases its strength and speed.
Explanation:
Answer:
Between the principal focus and the pole of the mirror
So impulse is a change in momentum.
Mass*(final velocity - initial velocity)
I dont think you will be able to find the average force with the given info because you need to know the time it takes for the car to slow down.
Answer:
The change in velocity is 15.83 [m/s]
Explanation:
Using the Newton's second law we have:
ΣF = m*a
The force in the graph is 185 N, therefore:
![185=0.369*a\\Where\\a=acceleration made it by the force [m/s^2]](https://tex.z-dn.net/?f=185%3D0.369%2Aa%5C%5CWhere%5C%5Ca%3Dacceleration%20made%20it%20by%20the%20force%20%5Bm%2Fs%5E2%5D)
![a=501.35[m/s^2]](https://tex.z-dn.net/?f=a%3D501.35%5Bm%2Fs%5E2%5D)
Now using the following kinematic equation:
![V^{2}=Vi^{2} + 2*a*(x-xi) \\where\\V=final velocity [m/s]\\Vi= initial velocity [m/s] = 0 the hockey disk is in rest when receives the hit.\\ x = Final position [m] = 0.4 m\\xi = initial position [m] = 0.15m\\](https://tex.z-dn.net/?f=V%5E%7B2%7D%3DVi%5E%7B2%7D%20%2B%202%2Aa%2A%28x-xi%29%20%5C%5Cwhere%5C%5CV%3Dfinal%20velocity%20%5Bm%2Fs%5D%5C%5CVi%3D%20initial%20velocity%20%5Bm%2Fs%5D%20%3D%200%20the%20hockey%20disk%20is%20in%20rest%20when%20receives%20the%20hit.%5C%5C%20x%20%3D%20Final%20position%20%5Bm%5D%20%3D%200.4%20m%5C%5Cxi%20%3D%20initial%20position%20%5Bm%5D%20%3D%200.15m%5C%5C)
Now replacing the values:
![V^{2}=0 + 2*501.35*(0.4-0.15)\\ \\V= 15.83[m/s]](https://tex.z-dn.net/?f=V%5E%7B2%7D%3D0%20%2B%202%2A501.35%2A%280.4-0.15%29%5C%5C%20%5C%5CV%3D%2015.83%5Bm%2Fs%5D)