Answer:
1 . The stage on the first meiotic division when the homologous chromosomes move to opposite poles but the sister chromatids remain together
: b. Anaphase I
2 . The stage in the second meiotic division where sister chromatids migrate to opposite poles
: c. Anaphase II
3 . A structure on the chromosome that holds a pair of chromatids together during replication
: f. centromere
4 . A double-stranded chromosome following replication attached by a centromere
: d. chromatid
5 . A condition where non-sister chromatid of homologous chromosomes exchange genes
: e. crossing over
6 . The stage in the first meiotic division where the homologous chromosomes line up as a pair
: a. Metaphase I
7 . The stage in the second meiotic division where the chromatid pair lines up at the equator of the cell: g. Metaphase II
Explanation:
DNA replication occurs during the S phase of the interphase of the cell cycle. The replicated DNA molecules are accommodated in two sister chromatids of a chromosome that are held together by a centromere.
During prophase I, the chromatids of a homologous chromosome pair exchange a genetic segment. This process is called crossing over. It generates recombinant chromatids with new combinations of genes.
Metaphase I of meiosis I includes the alignment of homologous pairs of chromosomes at the cell's equator. This is followed by separation and movement of homologous chromosomes to the opposite poles of the cell during anaphase I.
Metaphase II of meiosis II includes the alignment of individual chromosomes, each with two sister chromatids, on the cell's equator. During anaphase II, splitting centromere separates the sister chromatids which then move to the opposite poles of the cell.
Answer:
adding a catalyst
Explanation:
catalysts accelerate the speed of chemical reactions
<h2>Muscle contraction in cytoplasm </h2>
Explanation:
- Calcium stays in the sarcoplasmic reticulum until discharged by an improvement. Calcium at that point ties to troponin, causing the troponin to change shape and expel the tropomyosin from the coupling destinations. Cross-connect stick proceeds until the calcium particles and ATP are never again accessible.
- ATP is basic to get ready myosin for official and to "revive" the myosin.
- When the actin-restricting destinations are revealed, the high-vitality myosin head overcomes any issues, framing a cross-connect. When myosin ties to the actin, the Pi is discharged, and the myosin experiences a conformational change to a lower vitality state. As myosin consumes the vitality, it travels through the "power stroke," pulling the actin fiber toward the M-line.
So base on the question, I would only say YES, because and experiment must be done in a safe place with a professionals and more importantly it would be safe to all including the people around the factory. I hope you are satisfied with my answer and feel free to ask for more