Answer:
Option D. 13122 is the answer.
Step-by-step explanation:
As we can see from the table having interval and average rate of change, figures under average rate of change are forming a geometric sequence.
Sequence is 2, 6, 18 , 54, 162, 486.
and we have to find the average rate of change from x = 8 to x = 9, means we have to find 9th term of the given sequence.
Now we know that explicit formula of the sequence can be written as 
where Tn is the nth term of the sequence.
a = first term
r = common ratio
n = number of the term
Now from this explicit formula we can find the 9th term of the sequence.
From the given table
a = 2, r = 3, n = 9

T9 = 13122
Therefore Option D. 13122 will be the answer.
The parabolic motion is an illustration of a quadratic function
The equation that models that path of the rocket is y = -16/31x^2 + 256/31x - 880/31
<h3>How to model the function?</h3>
Given that:
x stands for time and y stands for height in feet
So, we have the following coordinate points
(x,y) = (5,0), (11,0) and (10,80)
A parabolic motion is represented as:
y =ax^2 + bx + c
At (5,0), we have:
25a + 5b + c = 0
c= -25a - 5b
At (11,0), we have:
121a + 11b + c = 0
Substitute c= -25a - 5b
121a + 11b -25a - 5b = 0
Simpify
96a + 6b = 0
At (10,80), we have:
100a + 10b + c = 80
Substitute c= -25a - 5b
100a + 10b - 25a -5b = 80
75a -5b = 80
Divide through by 5
15a -b = 16
Make b the subject
b = 15a + 16
Substitute b = 15a + 16 in 96a + 6b = 0
96a + 6(15a + 16) = 0
Expand
96a + 90a + 96 = 0
This gives
186a = -96
Solve for a
a = -16/31
Recall that:
b = 15a + 16
So, we have:
b = -15 * 16/31 + 16
b =-240/31 + 16
Take LCM
b =(-240 + 31 * 16)/31
[tex]b =256/31
Also, we have:
c= -25a - 5b
This gives
c= 25*16/31 - 5 * 256/31
Take LCM
c= -880/31
Recall that:
y =ax^2 + bx + c
This gives
y = -16/31x^2 + 256/31x - 880/31
Hence, the equation that models that path of the rocket is y = -16/31x^2 + 256/31x - 880/31
Read more about parabolic motion at:
brainly.com/question/1130127
Let
x = loaves of bread
y = batches of muffins
You must make a system of two equations with two unknowns that describe the problem
3.5x + 2.5y = 17 --- (1)
0.75x + 0.75y = 4.5 --- (2)
Resolving we have
x = 6-y (from (2))
replacing in (1)
3.5 (6-y) + 2.5y = 17
21 - 3.5y + 2.5y = 17
y = 21-17 = 4
Then substituting in (2)
x = 6-y = 6-4 = 2
Answer
Helena could bake:
2 loaves of bread
4 batches of muffins
Answer:
a
Step-by-step explanation:
v=pixrsqaurexh
2411.52=pix8squarexh
2411.52=64pixh
2411.54/64pi=h
11.99=12
The store's sales equate to $6000