Answer:
The geometric mean of the measures of the line segments AD and DC is 60/13
Step-by-step explanation:
Geometric mean: BD² = AD×DC
BD = √(AD×DC)
hypotenuse/leg = leg/part
ΔADB: AC/12 = 12/AD
AC×AD = 12×12 = 144
AD = 144/AC
ΔBDC: AC/5 = 5/DC
AC×DC = 5×5 = 25
DC = 25/AC
BD = √[(144/AC)(25/AC)]
BD = (12×5)/AC
BD= 60/AC
Apply Pythagoras theorem in ΔABC
AC² = 12² + 5²
AC² = 144+ 25 = 169
AC = √169 = 13
BD = 60/13
The geometric mean of the measures of the line segments AD and DC is BD = 60/13
4.7944 x 10^2 hope this helps!
Answer:
Option a) 50% of output expected to be less than or equal to the mean.
Step-by-step explanation:
We are given the following in the question:
The output of a process is stable and normally distributed.
Mean = 23.5
We have to find the percentage of output expected to be less than or equal to the mean.
Mean of a normal distribution.
- The mean of normal distribution divides the data into exactly two equal parts.
- 50% of data lies to the right of the mean.
- 50% of data lies to the right of the mean
Thus, by property of normal distribution 50% of output expected to be less than or equal to the mean.
Y=-5/3x+1
I hope this helps!