<h3><u>Answer:</u></h3>
<h3>
<u>Solution:</u></h3>
We are given that the arithmetic progression is defined by :
➝ 2n + 1
<em>Therefore, </em>
- <u>For </u><u>first </u><u>term</u>
➙ n = 1
➝ 2 × 1 + 1
➝ 2 + 1
➝ 3
- <u>For </u><u>second </u><u>term</u>
➙ n = 2
➝ 2 × 2 + 1
➝ 4 + 1
➝ 5
- <u>Common </u><u>difference</u>
➙ 2nd term - 1st term
➝ 5 - 3
➝ 2
<h3><u>More </u><u>information</u><u>:</u></h3>
- The difference between the successive term and the preceding term is the difference of an arithmetic progression. It is always same for the same arithmetic progression.
Answer:
w = -3/4 or -0.75
there is only one solution
Step-by-step explanation:
Answer:
$11
Step-by-step explanation:
Let's take 20% and convert it into a decimal, which is .20. Multiply that percentage by $55 (.20 * 55) and you get $11, which is the answer.
The zeros for this function are -2, -1 and a double root of 0.
You can find this by first factoring the polynomial on the inside of the parenthesis. Polynomials like this can be factored by looking for two numbers that multiply to the constant (2) and add up to the second coefficient (3). The numbers 2 and 1 satisfy both of those needs and thus can be used as the numbers in a factoring.
x^2(x^2 + 3x + 2)
x^2(x + 2)(x + 1)
Now to find the zeros, we set each part equal to 0. You may want to split the x^2 into two separate x's for this purpose.
(x)(x)(x + 2)(x + 1)
x = 0
x = 0
x + 2 = 0
x = -2
x + 1 = 0
x = -1
Answer: 
<em>y = mx + b</em>
m = slope = 
<u>The y-intercept(b) can be found by substituting a point into the function.</u>

<u>Therefore, the function is:</u>
