Explanation: The radius of an object is found from the center of the object to the perimeter. Radius can be any number, but it is the measurement from the center to the perimeter.
The molar concentration of the KI_3 solution is 0.251 mol/L.
<em>Step 1</em>. Write the <em>balanced chemical equation</em>
I_3^(-) + 2S_2O_3^(2-) → 3I^(-) + S_4O_6^(2-)
<em>Step 2</em>. Calculate the <em>moles of S_2O_3^(2-)</em>
Moles of S_2O_3^(2-)
= 27.9 mL S_2O_3^(2-) ×[0.270 mmol S_2O_3^(2-)/(1 mL S_2O_3^(2-)]
= 7.533 mmol S_2O_3^(2-)
<em>Step 3</em>. Calculate the <em>moles of I_3^(-)
</em>
Moles of I_3^(-) = 7.533 mmol S_2O_3^(2-)))) × [1 mmol I_3^(-)/(2 mmol S_2O_3^(2-)] = 3.766 mmol I_3^(-)
<em>Step 4</em>. Calculate the <em>molar concentration of the I_3^(-)
</em>
<em>c</em> = "moles"/"litres" = 3.766 mmol/15.0 mL = 0.251 mol/L
Hypochlourous acid only
Explanation : just is
Answer:
Average molecular weight of air is 28.84 g/mol.
Explanation:
The average molecular weight of a mixture is determined from their molar composition and molecular weight.
Average molecular weight :
: mole fraction of the 'i' component.
= Molecular weight of i component
Average molecular weight of air with approximate molar composition of 79% nitrogen gas and 21% of oxygen gas can be calculated as:
Average molecular weight of air:

