If you can provide the reaction you are looking at, then we can provide a more satisfactory answer.
If the forward reaction is exothermic, then reducing the temperature where the reaction occurs will shift the equilibrium towards the right. This is because exothermic reactions release heat, and this will counteract the change as stated in Le Chatelier's Principle.
If the forward reaction is endothermic, then reducing the temperature will shift to the left. This occurs as the backward reaction is the exothermic reaction, and by Le Chatelier's Principle, the reaction will favor the reaction that produces more in to counter a reduction in temperature, in this case the backward direction reaction.
Bacteria are the only type of cells that are not eukaryotic.
Answer: 2.75%
Explanation:
![pH=-log [H+]](https://tex.z-dn.net/?f=pH%3D-log%20%5BH%2B%5D)
![3.26 = -log [H+]](https://tex.z-dn.net/?f=3.26%20%3D%20-log%20%5BH%2B%5D)
![[H+] = 5.495\times 10^{-4} M](https://tex.z-dn.net/?f=%5BH%2B%5D%20%3D%205.495%5Ctimes%2010%5E%7B-4%7D%20M)

initial 0.020 0 0
eqm 0.020 -x x x
![K_a=\frac{[H+][A-]}{[HA]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%2B%5D%5BA-%5D%7D%7B%5BHA%5D%7D)
![K_a=\frac{[x][x]}{[0.020-x]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5Bx%5D%5Bx%5D%7D%7B%5B0.020-x%5D%7D)

![K_a=\frac{[5.495\times 10^{-4}]^2}{[0.020-5.495\times 10^{-4}]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5B5.495%5Ctimes%2010%5E%7B-4%7D%5D%5E2%7D%7B%5B0.020-5.495%5Ctimes%2010%5E%7B-4%7D%5D%7D)

percent dissociation = ![\frac{[H^+_eqm]}{[Acid_{initial}]}\times 100](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH%5E%2B_eqm%5D%7D%7B%5BAcid_%7Binitial%7D%5D%7D%5Ctimes%20100)
percent dissociation=
Thus percent dissociation= 2.75 %
Answer:
10.80
Explanation:
As per the equation, let us calculate the mole ratio. N2+3H2→2NH3. As per the equation one mole of nitrogen reacts with 1 mol of hydrogen.
In terms of mass. 28.01 g of nitrogen needs 3 mol of hydrogen or 6.048 g of hydrogen.
We can set up the ratio;
28.01 g of
l
N
2
needs
6.048 g of
l
H
2
1 g of
l
N
2
needs
6.048
28.01
g of
l
H
2
50.0 g of
l
N
2
needs
6.048
×
50.0
28.01
l
g of
l
H
2
=
10.80 g of
l
H
2
I guess its D.hope this helps....sorry if i'm wrong.