Answer : A nucleotide is composed of a phosphate group and a nitrogen-containing base.
Explanation :
Nucleotide : It is a building block of nucleic acids or we can say that it is building block of DNA and RNA.
It is composed of three sub-unit molecules which are a nitrogenous base, a five-carbon sugar and one phosphate group.
Nucleotide forms covalent bonds with other nucleotide for the formation of the nucleic acid strand.
Hence, a nucleotide is composed of a phosphate group and a nitrogen-containing base.
What are the phrases I don’t see any pictures??
Sodium , bromine zinc magnesium sulphur nitrogen potassium oxygen lead
86 percent is the percent yield for this experiment if he expected to produce 5g of product.
Explanation:
Given that:
mass of test tube = 5 grams
mass of test tube + reactant is 12.5 grams
mass of reactant = ( mass of test tube + reactant ) - (mass of test tube)
mass of reactant = 12.5 -5
= 7.5 grams
when 7.5 grams of reactant is heated mass of test tube was found to be 9.3 grams.
so mass of product formed = 9.3 - 5
= 4. 3 grams of product is formed (actual yield)
However, he expected the product to be 5 grams (theoretical yield)
Percent yield =
x 100
putting the values in the formula:
percent yield =
x 100
= 86 %
86 percent is the percent yield.
Answer:
A. The reaction will proceed forward forming more CH4
B. The reaction will proceed forward forming more CH4
C. Since the reaction is exothermic, raising the temperature will cause the reaction to proceed backward, thus forming C and H2.
D. Lowering the volume makes the gas particles to be more close together thereby enhancing their collisions leading to reaction. Therefore the reaction will proceed forward forming more CH4
E. Catalyst only reduce the activation energy so the reaction can proceed faster. The reaction will proceed forward forming.
F. The following will favour CH4 at equilibrium
i. Catalyst to the reaction mixture,
ii. Both adding more H2 to the reaction mixture and lowering the volume of the reaction mixture
iii. Adding more C to the reaction mixture.