Answer:
<em>The pH of the solution is 7.8</em>
Explanation:
The concentration of the solution is 0.001M and the dye could be in its protonated and deprotonated forms. If the concentration of the protonated form [HA] is 0.0002 M the concentration of the deprotonated form will be the subtraction between the concentration of the bye and the concentration of the protonated form:
[A-] = 0.001M - 0.0002M = 0.0008M
Also, the Henderson-Hasselbalch equation is
this equation shows the dependency between the pH of the solution, the pKa and the concentration of the protonated and deprotonated forms. Thus, replacing in the equation
Answer:
No
Explanation:
Gelatin is a substance that makes jello, and a fruit cup is a cup full of fruit
Hi!
The correct option would be 3.85x10^(24)
To find the number of atoms in 250g of potassium, we need to first calculate the number of atoms in
1 mole of Potassium = 39g which contains 6.022x10^(23) atoms of K
<em>(Avogadro's constant value for the amount of molecules/atoms in one mole of any substance)</em>
<em>Solution</em>
So as 39g of Potassium contains 6.022x10^(23) K atoms
1g of Potassium would contain 6.022x10^(23) / 39 = 1.544 x10^(22) atoms
So 250g of Potassium would contain 1.544x10^(22) x 250 = 3.86x10^(24) atoms
The answer should be hydrogen bonding. Water only has oxygen and hydrogen in it, which are both nonmetals, so you know the answer cannot be metallic or ionic. It also cannot be nonpolar because the electronegativity of the oxygens will make the molecule polar. You can also know it is hydrogen bonding because it can only take place when a hydrogen is attached to an oxygen, fluorine, or nitrogen. These bonds are very strong attractions, so the molecules are extremely hard to pull apart, creating a high boiling point. Hope that helps!