Given that the perimeter of rhombus ABCD is 20 cm, the length of the sides will be:
length=20/4=5 cm
the ratio of the diagonals is 4:3, hence suppose the common factor on the diagonals is x such that:
AC=4x and BD=3x
using Pythagorean theorem, the length of one side of the rhombus will be:
c^2=a^2+b^2
substituting our values we get:
5²=(2x)²+(1.5x)²
25=4x²+2.25x²
25=6.25x²
x²=4
x=2
hence the length of the diagonals will be:
AC=4x=4×2=8 cm
BD=3x=3×2=6 cm
Hence the area of the rhombus wll be:
Area=1/2(AC×BD)
=1/2×8×6
=24 cm²
Answer:
x = 0 , x = 9
Step-by-step explanation:
to find the zeros let f(x) = 0 , that is
x(x - 9) = 0
equate each factor to zero and solve for x
x = 0
x - 9 = 0 ⇒ x = 9
Answer:
∠F = 42° to the nearest degree
Step-by-step explanation:
In this question, we are asked to calculate the value of the angle.
Kindly note that since one of the angles we are dealing with in the triangle is 90°, this means that the triangle is a right-angled triangle
Please check attachment for the diagrammatic representation of the triangle
From the diagram, we can identify that the EF is the hypotenuse and the length FG is the adjacent. Thus , the appropriate trigonometric identity to use is the cosine
mathematically;
Cosine of an angle = length of adjacent/length of hypotenuse

F = 42.07
∠F = 42° to the nearest degree
Answer:
1,4600
Step-by-step explanation: