Answer:
(e) csc x − cot x − ln(1 + cos x) + C
(c) 0
Step-by-step explanation:
(e) ∫ (1 + sin x) / (1 + cos x) dx
Split the integral.
∫ 1 / (1 + cos x) dx + ∫ sin x / (1 + cos x) dx
Multiply top and bottom of first integral by the conjugate, 1 − cos x.
∫ (1 − cos x) / (1 − cos²x) dx + ∫ sin x / (1 + cos x) dx
Pythagorean identity.
∫ (1 − cos x) / (sin²x) dx + ∫ sin x / (1 + cos x) dx
Divide.
∫ (csc²x − cot x csc x) dx + ∫ sin x / (1 + cos x) dx
Integrate.
csc x − cot x − ln(1 + cos x) + C
(c) ∫₋₇⁷ erf(x) dx
= ∫₋₇⁰ erf(x) dx + ∫₀⁷ erf(x) dx
The error function is odd (erf(-x) = -erf(x)), so:
= -∫₀⁷ erf(x) dx + ∫₀⁷ erf(x) dx
= 0
9514 1404 393
Answer:
(c) Yes, because the bike order meets the restrictions of 4c + 6a ≤ 120 and 4c + 4a ≤ 100
Step-by-step explanation:
Try the numbers in the constraints to see if they work.
<u>Build hours</u>:
(4 h/child bike)(10 child bikes) = 40 hours
(6 h/adult bike)(12 adult bikes) = 72 hours
total build hours: 40 +72 = 112, less than 120; constraint is met
<u>Test hours</u>:
(4 h/child bike)(10 child bikes) = 40 hours
(4 h/adult bike)(12 adult bikes) = 48 hours
total test hours: 40 +48 = 88, less than 100; constraint is met
__
Both constraints are met, so the order can be filled.
Answer:
follow me for right answer