Answer:
14p+7
Step-by-step explanation:
Distribute
3p+15-8+11p
Answer: The inverse of the linear function f(x)=2x+1 is f^(-1) (x) = (1/2)x-1/2
Solution
f(x)=2x+1
y=f(x)
y=2x+1
Isolating x: Subtracting 1 both sides of the equation:
y-1=2x+1-1
y-1=2x
Multiplying both sides of the equation by 1/2:
(1/2)(y-1)=(1/2)2x
(1/2)y-1/2=x
x=(1/2)y-1/2
Changing "x" by "f^(-1) (x)" and "y" by "x":
f^(-1) (x) = (1/2)x-1/2
X=2 I believe but I need to keep typing to make it longer
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
<u>Calculus</u>
Implicit Differentiation
The derivative of a constant is equal to 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Product Rule: ![\frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Chain Rule: ![\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Quotient Rule: ![\frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
-y - 2x³ = y²
Rate of change of tangent line at point (-1, -2)
<u>Step 2: Differentiate Pt. 1</u>
<em>Find 1st Derivative</em>
- Implicit Differentiation [Basic Power Rule]:

- [Algebra] Isolate <em>y'</em> terms:

- [Algebra] Factor <em>y'</em>:

- [Algebra] Isolate <em>y'</em>:

- [Algebra] Rewrite:

<u>Step 3: Differentiate Pt. 2</u>
<em>Find 2nd Derivative</em>
- Differentiate [Quotient Rule/Basic Power Rule]:

- [Derivative] Simplify:

- [Derivative] Back-Substitute <em>y'</em>:

- [Derivative] Simplify:

<u>Step 4: Find Slope at Given Point</u>
- [Algebra] Substitute in <em>x</em> and <em>y</em>:

- [Pre-Algebra] Exponents:

- [Pre-Algebra] Multiply:

- [Pre-Algebra] Add:

- [Pre-Algebra] Exponents:

- [Pre-Algebra] Divide:

- [Pre-Algebra] Add:

- [Pre-Algebra] Simplify:
