1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kap26 [50]
3 years ago
6

Lilihoops1010 is asking for help! Go help them!

Mathematics
1 answer:
-BARSIC- [3]3 years ago
7 0

Answer:

Okay! I'll go help! (◠‿◕)

You might be interested in
Solve x^2-8x+41=0 for X
andrezito [222]
You get imaginary roots for this equation. 

x=4-5i
x=4+5i


7 0
3 years ago
Let ​f(x)equals=33xminus−​1, ​h(x)equals=startfraction 7 over x plus 5 endfraction 7 x+5 . find ​(hcircle◦​f)(66​).
Ronch [10]
\bf \begin{cases}
f(x)=3x-1\\
h(x)=\cfrac{7}{x+5}\\\\
(h\circ f)(x)=h(~~f(x)~~)
\end{cases}
\\\\\\
f(66)=3(66)-1\implies \boxed{f(66)=197}
\\\\\\
\stackrel{h(~~f(x)~~)}{h(~~f(66)~~)}\implies \stackrel{h(~~f(66)~~)}{h\left(~~\boxed{197}~~ \right)}=\cfrac{7}{\boxed{197}+5}\implies h\left(~~\boxed{197}~~ \right)=\cfrac{7}{202}
7 0
3 years ago
Find the median of these numbers ? 2,7,5,4,3
kotykmax [81]

Answer:

4

Step-by-step explanation:

MARK AS BRAINLIST!!

5 0
3 years ago
Read 2 more answers
(x³-3x²+2x+1/x²-4x+4)dx(dx/Dy)+(x²+4y-y²)/(²√4y+y²) solve for dx/dy<br><br>​
Furkat [3]
It’s 22/3 I think so that’s the answer
4 0
4 years ago
You are working for a company that designs boxes, bottles and other containers. You are currently working on a design for a milk
ra1l [238]

Volume is a measure of the <u>quantity </u>of <em>substance</em> a given <u>object</u> can contain. The required answers are:

1.1  The <u>volume</u> of each <u>milk</u> carton is 360 cm^{3}.

1.2  The area of <em>cardboard</em> required to make a single <u>milk</u> carton is  332.6 cm^{2}.

1.3  Each <u>carton</u> can hold 0.36 liters of <u>milk</u>.

1.4  The <em>cost</em> of filling the 200 <u>cartons</u> is R 86.40.

The <u>volume</u> of a given <u>shape</u> is the amount of <em>substance</em> that it can contain in a 3-dimensional <em>plane</em>. Examples of <u>shapes</u> with volume include cubes, cuboids, spheres, etc.

The <u>area</u> of a given <u>shape</u> is the amount of <em>space</em> that it would cover on a 2-dimensional <em>plane</em>. Examples of <u>shapes</u> to be considered when dealing with the area include triangle, square, rectangle, trapezium, etc.

The box to be considered in the question is a <u>cuboid</u>. So that;

<u>Volume</u> of <u>cuboid</u> = length x width x height

Thus,

1.1 The <u>volume</u> of each <u>milk</u> carton = length x width x height

                                                         = 6 x 6 x 10

                                                        = 360

The <u>volume</u> of each <u>milk</u> carton is 360 cm^{3}.

1.2 The <em>total area</em> of<em> cardboard </em>required to make a single<u> milk</u> carton can be determined as follows:

i. <u>Area</u> of the <u>rectangular</u> surface = length x width

                                                    = 6 x 10

                                                    = 60

Total <u>area</u> of the <u>rectangular</u> surfaces = 4 x 60

                                                     = 240 cm^{2}

ii. <u>Area</u> of the <u>square</u> surface = side x side = s²

                                                   = 6 x 6  

 <u>Area</u> of the <u>square</u> surface = 36 cm^{2}

iii. There are four <em>semicircular</em> <u>surfaces</u>, this implies a total of 2 <u>circles</u>.

<em>Area</em> of a <u>circle</u> = \pi r^{2}

where r is the <u>radius</u> of the <u>circle</u>.

Total <u>area</u> of the <em>semicircular</em> surfaces = 2 \pi r^{2}

                                        = 2 x \frac{22}{7} x (3)^{2}

                                        = 56.57

Total <u>area</u> of the <em>semicircular</em> surfaces = 56.6 cm^{2}

Therefore, total area of  <em>cardboard</em> required = 240 + 36 + 56.6

                                                            = 332.6 cm^{2}

The <u>area</u> of <em>cardboard</em> required to make a single <em>milk carton</em> is  332.6 cm^{2}.

1.3 Since,

  1 cm^{3}  = 0.001 Liter

Then,

360 cm^{3} = x

x = 360 x  0.001

  = 0.36 Liters

Thus each<em> carton</em> can hold 0.36 liters of <u>milk</u>.

1.4 total cartons = 200

<em>Total volume</em> of <u>milk </u>required = 200 x 0.36

                                                 = 72 litres

But, 1 kiloliter costs R1 200. Thus

<em>Total volume</em> in kiloliters = \frac{72}{1000}

                                         = 0.072 kiloliters

The <u>cost</u> of filling the 200 cartons = R1200 x 0.072

                                         = R 86.40

The <u>cost</u> of filling the 200 <u>cartons</u> is R 86.40.

For more clarifications on the volume of a cuboid, visit: brainly.com/question/20463446

#SPJ1

4 0
2 years ago
Other questions:
  • Insert commas to show periods according to Indian as well as International place value system of 2349812
    7·1 answer
  • Tiffany answered 87% of the questions on her math test correctly. There were 50 questions on the test. How many questions did ti
    14·1 answer
  • In order to make a precise cut from point Q to point S using a saw, Alfonso needs to know the angle measure for the angle whose
    7·2 answers
  • I NEED HELP ASAP PLEASE
    8·1 answer
  • Write the equation of the line perpendicular to y=-1/4 that passes through (-3,2)
    14·1 answer
  • What are the types of roots of the equation below?
    14·1 answer
  • Time. weight
    7·1 answer
  • Please help for test due today
    8·1 answer
  • Dave can clean pools at a constant rate of 3/5 pools/hours , What is the ratio of the number of pools to the number of hours?
    8·1 answer
  • Which postulate or theorem proves that these two triangles are
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!