Answer:
3 kg
Explanation:
Momentum before = momentum after
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
After jumping on the skateboard, the student and the skateboard have the same velocity, so v₁ = v₂.
m₁u₁ + m₂u₂ = (m₁ + m₂) v
(47.4 kg) (4.2 m/s) + m (0 m/s) = (47.4 kg + m) (3.95 m/s)
m = 3 kg
B. When the ball is rolling across the floor at a constant velocity, the change in its kinetic energy is zero.
<h3>
What is change in kinetic energy?</h3>
The change in kinetic energy of an object is the dereference between the final kinetic energy and the initial kinetic energy.
ΔK.E = K.Ef - K.Ei
ΔK.E = 0.5m(vf² - vi²)
where;
- K.Ef is the final kinetic energy
- K.Ei is the initial kinetic energy
- vf is final velocity
- vi is initial velocity
At constant velocity, the initial velocity and final velocity are equal.
ΔK.E = 0.5m(0) = 0
Thus, when the ball is rolling across the floor at a constant velocity, the change in its kinetic energy is zero.
Learn more about kinetic energy here: brainly.com/question/25959744
#SPJ1
Answer:
The neutrinos are produced in the core of the sun by nuclear fusion and measuring their number helps us confirm that there are enough proton-proton chain reactions of each which produce a neutrino and going on in the Sun's core to explain the energy output of the Sun.
Answer:
To make a change between these two units of measurement, the formula to be used is kg x 9.807 = N which is the same conversion used automatically by the kg to N conversion calculator. As an example, 2kg = 19.6N and 5kg = 49N.
Explana
The partial pressures of HBr when the system reaches equilibrium is 2.4 X 10⁻¹¹ atm
<u>Explanation:</u>
H₂ + Br₂ ⇒ 2HBr
PH₂ = 0.782atm
PBr₂ = 0.493atm
Kp = (PHBr)²/ (PH₂) (PBr₂) = 1.4 X 10⁻²¹
At equilibrium:
Let 2x = pressure of HBr
PH₂ = 0.782 -x
PBr₂ = 0.493 - x
Kp = (2x)^2 / (0.782-x)(0.493-x)
Now, because Kp is very small, x will be very small compared to 0.782 and 0.493.
Then,
Kp = 1.4X10⁻²¹ = (4x²) / (0.782)(0.493)
x = 1.2X10⁻¹¹
PHBr = 2x = 2.4 X 10⁻¹¹ atm
Therefore, the partial pressures of HBr when the system reaches equilibrium is 2.4 X 10⁻¹¹ atm