Answer:
work output is always less than work input - the ratio is less than 1.
Explanation:
This principle comes from the fact that a machine or system cannot produce more work than is supplied to it, because this would violate the energy conservation law (work is a type of mechanical energy).
In theoretical machines called "ideal machines" the input work is the same as the output work, but these machines are only theoretical because in real applications there is always some type of energy loss, either in heat produced by a machine or processes for its operation, for this reason the output work is always less than the input work.
Regarding the ratio work output to work input:

because work input WI is always greater than work output WO.
Answer:
d
= m× λ⇒ d = λ ×m×l / x
= 630×
m × 3×3m/ 45×
m
= 1.26×
m
Explanation:
the above calculation is based on Young’s double slit experiment where the two slits provide two coherent light sources which results either constructive interference or destructive interference when passing through a double slit.
Answer:
Explanation:
Given a square Piece whose side is 12 inches
Now square pieces are cut from each corner to make it a open box
Suppose x is the length of square piece at each corner
then
base square has a length of 
Dimension of new box is 
Volume 

For maximum volume differentiate with respect to x we get

we get x=6 and 4 but at x=6 volume becomes zero therefore x=4 is valid



Answer:
True
Explanation:
Momentum of an object can be defined as the product of its mass and velocity at which it is travelling. With that in mind, momentum = 3*100=300(kg⋅m/s).
One thing to note is the units mentioned. The SI unit of momentum is kg * m/s as it is the product of mass(kilograms) and velocity(meter per second) and not Newton.
The equation for force is F=ma. Because we have the value of mass (0.42 kg) and the acceleration (14.8 m/s^2), simply plug them into the equation for force to get

The answer is 6.22 N because newtons are the unit used to measure force.