To solve problem 19, we must remember the order of operations. PEMDAS tells us that we should simplify numbers in parentheses first, exponents next, multiplication and division after that, and finally addition and subtraction. Using this knowledge, we can begin to simplify the problem by working out the innermost set of parentheses:
36 / [10 - (3-1)²]
36 / [10 - (2)²]
Next, we should still simplify what is inside the parentheses but continue to solve the exponents (the next letter in PEMDAS).
36/ (10-4)
After that, we should compute the subtraction that is inside the parentheses.
36/6
Finally, we can solve using division.
6
Now, we can move onto problem 20:
1/4(16d - 24)
To solve this problem, we need to use the distributive property, which allows us to distribute the coefficient of 1/4 through the parentheses by multiplying each term by 1/4.
1/4 (16d-24)
1/4(16d) - 1/4(24)
Next, we can simplify further by using multiplication.
4d - 6
Therefore, your answer to problem 19 is 6 and the answer to problem 20 is 4d -6.
Hope this helps!
Answer:
Specific Learning Outcomes:
Solve problems that involve finding powers of a number
Description of mathematics:
In this problem students work with powers of numbers and, as a consequence, come to understand what is happening to the numbers.
Students also see how an apparently enormous and difficult calculation can be broken down into manageable parts. The students should come to realise that there are only a limited number of unit digits obtained when 7 is raised to a power. Further, these specific digits 'cycle round' as the power of 7 increases. This cycle is 7, 9, 3, 1, 7, 9, …
The same is true of the digit in the tens place.
So
lets say we have
a/b=2a/2b
we know that if we invert one and multiply it by the other (divide them), we get 1 because a/a=1 where a=a
so
2/3 and 4/6 are equivelent because if you divide them we get 12/12=1
2/3 and 8/12 are equivilent because if you divide them we get 24/24=1
and sinde 2/3=4/6 and 2/3=8/12, 2/3=4/6=8/12
they are equivlent