The first thing we are going to do to graph our equation is solve them for

:
For our first equation:



For our second equation:


Now, we just need to use the graphing utility to graph our equations:


We can conclude that the graph of the equations is:
Answer:
12870ways
Step-by-step explanation:
Combination has to do with selection
Total members in a tennis club = 15
number of men = 8
number of women = 7
Number of team consisting of women will be expressed as 15C7
15C7 = 15!/(15-7)!7!
15C7 = 15!/8!7!
15C7 = 15*14*13*12*11*10*9*8!/8!7!
15C7 = 15*14*13*12*11*10*9/7 * 6 * 5 * 4 * 3 * 2
15C7 = 15*14*13*12*11/56
15C7 = 6,435 ways
Number of team consisting of men will be expressed as 15C8
15C8 = 15!/8!7!
15C8 = 15*14*13*12*11*10*9*8!/8!7!
15C8 = 15*14*13*12*11*10*9/7 * 6 * 5 * 4 * 3 * 2
15C8 = 6,435 ways
Adding both
Total ways = 6,435 ways + 6,435 ways
Total ways = 12870ways
Hence the required number of ways is 12870ways
Answer:
3
which is approx 6.71
Step-by-step explanation:
=
·
= 3
Step-by-step explanation:


To solve a system of equations, we can add the two equations and solve for one of the remaining variables -- let's try to eliminate the
variable when we add the two equations together.
Right now, there's a
term in the first equation, and a
term in the second equation, so if we add those together, we'll be able to eliminate the
variable altogether and solve for
.
However, when we also have a
term in the first equation and
term in the second equation, so adding these together will also eliminate the
term, leaving a
on the left-hand side of the equation.
If we add the two numbers on the right side of the equation, we get
, which does not equal
, meaning there are no solutions to this system of equations.