Answer:
F(x)=x2+C
Step-by-step explanation:
Answer:
Step 1: Given
Step 2: Add 6 on both sides
Step 3: Multiply 7 on both sides
Step 4: Divide by 4 on both sides
In each case, you can use the second equation to create an expression for y that will substitute into the first equation. Then you can write the result in standard form and use any of several means to find the number of solutions.
System A
x² + (-x/2)² = 17
x² = 17/(5/4) = 13.6
x = ±√13.6 . . . . 2 real solutions
System B
-6x +5 = x² -7x +10
x² -x +5 = 0
The discriminant is ...
D = (-1)²-4(1)(5) = -20 . . . . 0 real solutions
System C
y = 8x +17 = -2x² +9
2x² +8x +8 = 0
2(x+2)² = 0
x = -2 . . . . 1 real solution
9514 1404 393
Answer:
(i) x° = 70°, y° = 20°
(ii) ∠BAC ≈ 50.2°
(iii) 120
(iv) 300
Step-by-step explanation:
(i) Angle x° is congruent with the one marked 70°, as they are "alternate interior angles" with respect to the parallel north-south lines and transversal AB.
x = 70
The angle marked y° is the supplement to the one marked 160°.
y = 20
__
(ii) The triangle interior angle at B is x° +y° = 70° +20° = 90°, so triangle ABC is a right triangle. With respect to angle BAC, side BA is adjacent, and side BC is opposite. Then ...
tan(∠BAC) = BC/BA = 120/100 = 1.2
∠BAC = arctan(1.2) ≈ 50.2°
__
(iii) The bearing of C from A is the sum of the bearing of B from A and angle BAC.
bearing of C = 70° +50.2° = 120.2°
The three-digit bearing of C from A is 120.
__
(iv) The bearing of A from C is 180 added to the bearing of C from A:
120 +180 = 300
The three-digit bearing of A from C is 300.