A:
(f+g)(x)=f(x)+g(x)
(f+g)(x)=4x-5+3x+9
(f+g)(x)=7x+4
B:
(f•g)(x)=f(x)•g(x)
(f•g)(x)=(4x-5)(3x+9)
(f•g)(x)=12x^2-15x+36x-45
(f•g)(x)=12x^2+21x-45
C:
(f○g)(x)=f(g(x))
(f○g)(x)=4(3x+9)-5
(f○g)(x)=12x+36-5
(f○g)(x)=12x+31
1. a²+b²=c²
a=6²=36
b=x²
c=15²=225
x=√189 feet deep (the square root of 189)
2. a²+b²=c²
a=3²=9
b=x²
c=5²=25
x=√16=4
Hope that helped
;)
Answer:

The quadratic equation has one real root with a multiplicity of 2.
Step-by-step explanation:
Given a quadratic equation:

You can find the Discriminant with this formula:

<em> </em>In this case you have the following quadratic equation:

Where:

Therefore, when you substitute these values into the formula, you get that the discriminant is this:
Since
, the quadratic equation has one real root with a multiplicity of 2 .