1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
snow_tiger [21]
3 years ago
15

List the sides of each triangle from shortest to greatest

Mathematics
1 answer:
True [87]3 years ago
3 0

A) First, we need to calculate x. We can do this by doing: 180-(70+50), which is nothing but 60.

Since the largest angle is 60, it means that the side opposite of it is the largest side. Which in this case, side AB.

So the largest side is AB.

Now, let's take a look at the smallest angle which is <B, because AC is the opposite of this angle, it must also be the smallest side.

We're left with angle <50, which is "medium" sized? Obviously, this can just be put in the middle (Side BC)

So, for response A, you should get AC, BC, AB.

Now for problem B, it's the same steps we did above. If you replicate what we did you should get PQ, PR,RQ.

Please let me know how I did.

Happy studying!

You might be interested in
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
What is the sum of 2x^2 and 2x^3
jeyben [28]

For this case we have the following expression:

2x ^ 2 + 2x ^ 3

The terms are not similar, so they cannot be added.

<em>Examples of similar terms:</em>

x ^ 3 + x ^ 3 = 2x ^ 3\\3x ^ 4 + 2x ^ 4 = 5x ^ 4

Then, the expression given can only be rewritten as:

2 (x ^ 2 + x ^ 3)

This is taking common factor 2 to both terms.

Answer:

2 (x ^ 2 + x ^ 3)

7 0
3 years ago
One criticism of a stratified random sample is
Evgen [1.6K]
No ffffffffffffffffffffffffffffffff
4 0
3 years ago
On a certain hot​ summer's day, 643 people used the public swimming pool. The daily prices are $1.50 for children and $2.00 for
lilavasa [31]

249 children and 394 adults swam at the public pool.

Step-by-step explanation:

Number of people swam at pool = 643

Receipts = $1161.50

Cost for one child = $1.50

Cost for one adult = $2.00

Let,

x be the number of children

y be the number of adults

According to given statement;

x+y=643    Eqn 1

1.50x+2.00y = 1161.50   Eqn 2

Multiplying Eqn 1 by 2

2(x+y=643)\\2x+2y=1286\ \ \ Eqn\ 3\\

Subtracting Eqn 2 from Eqn 3

(2x+2y)-(1.50x+2.00y)=1286-1161.50\\2x+2y-1.50x-2.00y=124.50\\0.5x=124.50

Dividing both sides by 0.5

\frac{0.5x}{0.5}=\frac{124.50}{0.5}\\x=249

Putting x=249 in Eqn 1

249+y=643\\y=643-249\\y=394

249 children and 394 adults swam at the public pool.

Keywords: linear equation, subtraction

Learn more about linear equations at:

  • brainly.com/question/5798698
  • brainly.com/question/5758530

#LearnwithBrainly

4 0
3 years ago
What is 1/2 plus 4/9
andre [41]
17/18
Hope this helps
6 0
3 years ago
Read 2 more answers
Other questions:
  • The city subway is being extended to include a new stop in a large open plaza. The entrance to the new stop needs to be both arc
    5·1 answer
  • If DE=4x-1,EF=9,and DF=9x-22, find the variable of x
    13·1 answer
  • Number is a multiple of 3 and 4 and the sum of its digit is 6 what is the number
    13·1 answer
  • reflect the figure with the given vertices across the y-axis, A(0,-3), B(3,-4),C(2,-1) what is the image of B
    8·1 answer
  • Students in a science class are divided into 6 equal groups with at least 4 students in each group for a project. Write and solv
    15·2 answers
  • I NEED HELP PLEASE, THANKS! :)
    15·1 answer
  • Suppose potato chips cost 36.5
    10·1 answer
  • PLZZZZZZZZZ NEED HELP ASAP QUESTION WORTH 20 POINTS
    5·1 answer
  • 45 is 35% of what number?​
    9·2 answers
  • Sasha had −$70.12 in her bank account on Monday. She deposited $100.50 on Tuesday. She then purchased some groceries for $27.13
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!