1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Karo-lina-s [1.5K]
4 years ago
11

For what value of a should you solve the system of elimination?

Mathematics
2 answers:
SIZIF [17.4K]4 years ago
7 0
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
Novay_Z [31]4 years ago
7 0
--------------------------
3x + 5y = 10:


1. Subtract 5y from both sides

3x = 10 - 5y

2. Divide both sides by 3

x = 10 - 5y over 3

3. Factor out the common term 5

x = 5(2 - y) over 3

Final Answer:

x = 5(2 - y) over 3
-----------------------------
2x + ay = 4

1. Subtract ay from both sides

2x = 4 - ay

2. Divide both sides by 2

x = 4 - ay over 2

Final Answer:

x = 4 - ay over 2
You might be interested in
In a survey, 250 adults and children were asked whether they know how to
Luden [163]
40% u just add the 2 decimals together
7 0
3 years ago
Read 2 more answers
Find the area <br> steps, please
mixas84 [53]

Answer:

45) 35.75 sq km

46) 24.5 sq km

Step-by-step explanation:

Area of Square:

A= \frac{(base)(height)}{2}

45) A = (11)(6.5) ÷ 2 =

46) A = (10)(4.9) ÷ 2 =

5 0
3 years ago
Read 2 more answers
RATIO AND PROPORTION PROGRAM ENHANCEMENT UNIT PAUL IS PAID 473.88 FOR 38 1/4 HOURS OF WORK WHAT AMOUNT SHOULD HE BE PAID FO 40 H
kaheart [24]

Answer:

495.56 should be p[aid for 40 hours.

Step-by-step explanation:

concept used

In ratio

a:b = c:d

__________________________________________

Given

IS PAID 473.88 FOR 38 1/4 HOURS OF WORK

38 1/4 hour = 38.25 hours

if we get ratio for payment per hour

we have

473.88 / 38.25 or  473.88 : 38.25

___________________________________

now we have to find payment for 40 hours

let that payment be x

thus,  ratio for payment per hour in this case will be

x/40 or x:40

since

x:40 and  473.88 : 38.25 is representative of same program enhancement unit both ratio will be equal

thus

x:40 =  473.88 : 38.25

x/40 =  473.88 / 38.25

=> x = 40*(473.88 / 38.25 ) = 495.56

Thus,  495.56 should be p[aid for 40 hours.

3 0
4 years ago
A scuba diver descends farther down into the ocean from an initial depth of 14.7 feet below sea level. The scuba diver descends
uranmaximum [27]

The maximum rate, r, that the scuba diver may descend is r≤ 11.2

Given the following parameters:

  • Initial length = 14.7feet
  • Time = 4.5 minutes
  • Rate  = distance/time

If the scuba diver reaches a depth no more than 65.1 feet below sea level, then;

r ≤ (65.1 - 14.7)/4.5

r≤ 50.4/4.5

r≤ 11.2

Hence the maximum rate, r, that the scuba diver may descend is r≤ 11.2

Learn more on rate here: brainly.com/question/11408596

8 0
3 years ago
Help me with this pls
kobusy [5.1K]

Answer:

C.)-5

Step-by-step explanation:

y2-y1/x2-x1

(-9,6) (-6,-9)

-9-6=-15

-6-(-9)=3

-15/3=-5

4 0
3 years ago
Read 2 more answers
Other questions:
  • Please help in math I give lots of points.
    7·1 answer
  • A carpenter makes wooden chairs.
    6·1 answer
  • Chris is trimming trees. He can trim 2/3 of a tree in 1/2 of an hour. At what rate can Chris trim trees
    11·1 answer
  • A truck is carrying 3 tons of cement and 150 pounds of bricks. How many pounds does the truck's load weigh in total
    7·1 answer
  • Guys plssssssss! I want to spend time today and tomorrow with my fam before they go back to Washington
    5·1 answer
  • Andre purchased 1 quart of lemonade
    12·1 answer
  • A patient needs a total dose of 50 grams of albumin. The pharmacy has 50 m
    5·1 answer
  • Find the zero of the polynomial p(x)=5x-10?
    5·1 answer
  • What is 1 + 1 '-' lol
    8·1 answer
  • Which of the following expressions are equivalent to 1/-7 x -6/5?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!