1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Karo-lina-s [1.5K]
3 years ago
11

For what value of a should you solve the system of elimination?

Mathematics
2 answers:
SIZIF [17.4K]3 years ago
7 0
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
Novay_Z [31]3 years ago
7 0
--------------------------
3x + 5y = 10:


1. Subtract 5y from both sides

3x = 10 - 5y

2. Divide both sides by 3

x = 10 - 5y over 3

3. Factor out the common term 5

x = 5(2 - y) over 3

Final Answer:

x = 5(2 - y) over 3
-----------------------------
2x + ay = 4

1. Subtract ay from both sides

2x = 4 - ay

2. Divide both sides by 2

x = 4 - ay over 2

Final Answer:

x = 4 - ay over 2
You might be interested in
What are the constants in the expression 12+x-3.7-8y+1/3
siniylev [52]
A constant in an algebraic expression is defined as a term that does not change during the expression, so, in other words, a term that does not have a variable in it. so the constants are

12
-3.7
1/3
7 0
3 years ago
Pls find 5he area of each rectangle thxs
horsena [70]
(7 cm)*(10 cm) = 70 cm^2

The area is the product of length and width.
3 0
2 years ago
Read 2 more answers
How do i solve 5y - 10 = -25?
viva [34]
So to find the answer you want to isolate the y. So the first thing you want to do is to move everything to the opposite side of the = sign. You start by adding 10 to both sides.
10+ 5y -10 = -25 +10  
 5y = -15.
the tens cancel out on the left side and on the right you get left with -15/
Since y is being multiplied by 5 you always want to do the opposite so you divide by 5.
5y/5 = -15/5
y = -3
It's hard to explain but you just have to remember that what you do to one side you must do to the other to keep the equation balanced.

8 0
3 years ago
Read 2 more answers
Kevin can mow the lawn in 1.5 hours. Together, Kevin and Eric can mow the lawn in 30 minutes. How long will it take Eric to mow
xeze [42]

Answer:

45

Step-by-step explanation:

These work problems are always done in terms of fractions ie if both (Kevin & Eric) took 30mins to mow and Kevin took 1.5hrs (90mins) alone then we can make an equation like below

1/time took for both = 1/time took for Kevin + 1/time took for Eric

1/30 = 1/90+1/x    ==> calling time took for Kevin x

solving the above 1/x = 1/30-1/90

1/x=2/90

x=45

6 0
2 years ago
PLSSS HELP IF YOU TURLY KNOW THISS
Nookie1986 [14]

\small\boxed{\begin{array}{cc} \hline\sf \normalsize {Math \: \: \: Question}\\ \hline\end{array}}

=================================

90.000.000 { \times 10}^{9}

=================================

\begin{gathered}\begin{gathered}\tiny\boxed{\begin{array} {} \red{\bowtie}\:\:\:\: \red{\bowtie}\\。◕‿◕。\end{array}}\end{gathered}\end{gathered}:BrainliestBunch

5 0
2 years ago
Read 2 more answers
Other questions:
  • 4. A homeowner is deciding on the size of tiles to use to fully tile a rectangular wall in her bathroom that is
    7·1 answer
  • Choose the function that correctly identifies the transformation of f(x) = x2 shifted four units right and seven units down.
    13·2 answers
  • Which expression can be used to determine the total weight of b baseballs that weight 5.25 ounces each and s softballs that weig
    6·2 answers
  • There are 15 research doctors participating in the study and the research board needs to be established with the offices of dire
    12·2 answers
  • Sue set up a lemonade stand and sold 10 glasses of lemonade in the first hour. Her sales increased at the rate of 20% per hour f
    5·1 answer
  • The coordinate grid shows points A through K. What point is a solution to the system of inequalities? y ≤ −2x + 10 y > 1 over
    8·1 answer
  • May you guys help me with this question. i'm not good at percentage <:3
    12·1 answer
  • Add parentheses to the expression so that its value is 6:<br><br> 3 + 9 ÷ 9 - 6
    13·1 answer
  • help fast pls .. Find the equation for g(x) by substituting the known point (1, 4) and solving for k.
    13·1 answer
  • Can you please help
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!