1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Karo-lina-s [1.5K]
3 years ago
11

For what value of a should you solve the system of elimination?

Mathematics
2 answers:
SIZIF [17.4K]3 years ago
7 0
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
Novay_Z [31]3 years ago
7 0
--------------------------
3x + 5y = 10:


1. Subtract 5y from both sides

3x = 10 - 5y

2. Divide both sides by 3

x = 10 - 5y over 3

3. Factor out the common term 5

x = 5(2 - y) over 3

Final Answer:

x = 5(2 - y) over 3
-----------------------------
2x + ay = 4

1. Subtract ay from both sides

2x = 4 - ay

2. Divide both sides by 2

x = 4 - ay over 2

Final Answer:

x = 4 - ay over 2
You might be interested in
Which statement about this system of equations is true? A. The system has no solution. B. The system has a unique solution at (0
SCORPION-xisa [38]

Answer:

A. The system has no solutions

Step-by-step explanation:

Step 1: Check to see if the 2 lines share 1 slope

slope of blue line = \frac{y2-y1}{x2-x1} =\frac{7-6}{3-0}=\frac{1}{3}

slope of red line = \frac{y2-y1}{x2-x1} =\frac{-3-(-4)}{3-0}=\frac{1}{3}

Step 2: Realize that lines with the same slope never touch

We know lines with the same slope are parallel to each other so they won't collide

Step 3: Know what the question is asking you

When they ask for solutions to the system of equations they are asking you to find out where they intersect

Step 4: Find answer

Because we know this is a parallel line they will never intersect causing this system to never have an answer or solution

Therefore the answer is A. The system has no solutions

8 0
3 years ago
Read 2 more answers
3. Create an equation that represents the total cost, p, of buying s same-day pass for
patriot [66]

Answer:

p * s(3) + b

Step-by-step explanation:

6 0
2 years ago
Read 2 more answers
The dot plot below shows the number of dogs in neighborhood houses: A dot plot with integers 1 to 5 is shown. It is labeled Dogs
RUDIKE [14]
It is not symmetric because it has a peak at 1 and to be symmetric it has to be the same on both sides of the peak
4 0
3 years ago
Read 2 more answers
One angle of a triangle measures 92°. The other two angles are congruent.
BARSIC [14]

Answer:

Each angle measures 44°.

Step-by-step explanation:

5 0
2 years ago
Read 2 more answers
I need help with this, please. Your family is driving from Harrisburg Pennsylvania to San Antonio, Texas a trip of 1430 miles. Y
olga_2 [115]

Estimate the total amount you should plan to spend on gasoline for the entire trip

<em>Total distance of the trip</em> = 1430 miles

<em>After 350 miles, refill tank</em> = $35

This means 350 miles cost $35

1430 miles cost $x

solve using ratio

350 : 35 = 1430 : x

350/35 = 1430 / x

10 = 1430/x

<em>cross product</em>

10x = 1430

<em>Divide both sides by 10</em>

x = 1430 / 10

x = $143

Therefore, the total amount you should plan to spend on gasoline for the entire trip is $143

Read more:

brainly.com/question/18520020

3 0
3 years ago
Other questions:
  • Which of the following is not a way to represent the solution of the inequality 8x - (5x + 4) greater than or equal to -31?
    11·2 answers
  • Solve this quadratic equation 2x^2+x-5 = 0
    5·1 answer
  • TWO MINUTES HELP MY PLEASE
    9·2 answers
  • The number of pens used varies directly with the number of pieces of paper needed. If 12 pens are used when 40 pieces of paper a
    9·1 answer
  • 3. Solve the absolute inequality <br>|2x + 3| &lt; x + 6​
    12·1 answer
  • (-b3 + 3b2 + 8) – ? - 5b2 – 9) = 5b3 +852 +17
    5·1 answer
  • Find dy/dx for 4 - xy = y^3
    15·1 answer
  • 2. Which of the following points lies in the solution set of the inequality y&gt;/=3x+10?
    9·1 answer
  • Drag each measure to a box on the right to match the measure on the left. 5 feet10,560 feet48 inches126 inches 2 miles 123 yards
    7·1 answer
  • 5x= 20 word problem
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!