1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Karo-lina-s [1.5K]
3 years ago
11

For what value of a should you solve the system of elimination?

Mathematics
2 answers:
SIZIF [17.4K]3 years ago
7 0
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
Novay_Z [31]3 years ago
7 0
--------------------------
3x + 5y = 10:


1. Subtract 5y from both sides

3x = 10 - 5y

2. Divide both sides by 3

x = 10 - 5y over 3

3. Factor out the common term 5

x = 5(2 - y) over 3

Final Answer:

x = 5(2 - y) over 3
-----------------------------
2x + ay = 4

1. Subtract ay from both sides

2x = 4 - ay

2. Divide both sides by 2

x = 4 - ay over 2

Final Answer:

x = 4 - ay over 2
You might be interested in
X2 – 12x + 37 = 0 in simplest a + bi form
Andreas93 [3]

Answer:

x=6+1

Step-by-step explanation:

4 0
3 years ago
What's the answer???
blsea [12.9K]
14/16 or anything like that
3 0
3 years ago
Read 2 more answers
the point B(-3, -2) is translated 4 units left. what are the coordinates of the resulting point, B’?
ololo11 [35]

Answer:

B'(-7 , -2)

Step-by-step explanation:

First we must understand the coordinate-axis, when we want to move a point to the left or right we do it on the x-axis. to move up or down is on the y axis.

now if we move to the left we go to the negative and to the right the positive

as we are going to move to the left we have to subtract the value that he gave us (4) only to the part of x

B(-3 , -2)

-3 - 4 = -7

B'( -7 , -2)

3 0
3 years ago
Solve for b.<br> 8^b-1=2^4b+4<br> b=_____
777dan777 [17]
I hope this helps you

7 0
3 years ago
SOLVED
Nastasia [14]
5)
a. The equation that describes the forces which act in the x-direction: 
<span>     Fx = 200 * cos 30 </span>
<span>
b. The equation which describes the forces which act in the y-direction: </span>
<span>     Fy = 200 * sin 30 </span>

<span>c. The x and y components of the force of tension: </span>
<span>    Tx = Fx = 200 * cos 30  </span>
<span>    Ty = Fy = 200 * sin 30 </span>

d.<span>Since desk does not budge, </span><span>frictional force = Fx
                                                                        = 200 * cos 30 </span>

<span>                                                 Normal force </span><span>= 50 * g - Fy
                                                                       = 50 g - 200 * sin 30 
</span>____________________________________________________________
6)<span> Let F_net = 0</span>
a. The equation that describes the forces which act in the x-direction: 
    (200N)cos(30) - F_s = 0

b. The equation that describes the forces which act in the y-direction:
    F_N - (200N)sin(30) - mg = 0

c. The values of friction and normal forces will be:
     Friction force= (200N)cos(30),
     
The Normal force is not 490N in either case...
Case 1 (pulling up)
F_N = mg - (200N)sin(30) = 50g - 100N = 390N

Case 2 (pushing down)
F_N = mg + (200N)sin(30) = 50g + 100N = 590N
4 0
4 years ago
Other questions:
  • Captain Two-Pegs is going to load his pirate ship with cannons. He has room for 10 cannons. He has allotted for 111 pounds of ca
    15·2 answers
  • Insert &lt; &gt;, or= to make the following sentence true.
    10·2 answers
  • Perform the indicated operation. (3a2 - 7xy)(3a2 + 7xy)
    13·2 answers
  • A sales manager collected the following data on annual sales for new customer accounts and the number of years of experience for
    6·1 answer
  • Joan's dinner contains 210 grams of carbohydrate, 60 grams of protein, and 52 grams of fat. What percent of kilocalories in this
    12·1 answer
  • X^2/(x+2) + 2 (x+2)/x^2 = 3 solve <br>please help me with steps​
    5·1 answer
  • Which sequence of transformations will change figure PQRS to figure P′Q′R′S′?Counterclockwise rotation about the origin by 90 de
    9·2 answers
  • Can someone please help me?
    8·1 answer
  • please help will give BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLI
    11·2 answers
  • Find the product of 11 and -2​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!