Answer:
The correct answer is BB genotype and BO genotype.
Explanation:
The human blood system or ABO system shows codominance due to the multiple alleles. That means three different alleles for human blood type are present are IA, IB, and i. For easy understanding can be stated as A (for IA), B (for IB), and O (for i).
If someone has blood type B could have a genotype of either BB or BO because of the dominance of B allele on O where is If A allele present with B allele it would show co-dominance.
Thus, the correct answer is the BB genotype and BO genotype.
Stockmanship is a term more common in the beef cattle industry and can be defined as the art and science of handling cattle, or any other farm animal, properly.
<span>Warbler Finches are most like the ancestral finch</span>
Anabolism is for the synthesis of complex molecules essential in the building up of organs and tissues. It is therefore responsible for the increase in body size. Examples of anabolism are bone growth and mineralization, and muscle mass build-up.
The noncyclic pathway is a FLOW of electrons from water, to photosystem II, to PHOTOSYSTEM I to NADPH. Energy is released as ELECTRONS move through the first electron transfer chain. This energy pumps HYDROGEN IONS into the thylakoid compartment, and then they power the formation of ATP as they flow back out. Sunlight provides the energy needed to keep this cycle going.
----------------------------------------------------------------------------------------------------
- Luminous energy is trapped by chlorophyll in Photosystem II.
- When the pigment molecules absorb light, electrons provided by water molecules get in a higher energy level.
- The excited electrons go through the electron transport chain from Photosystem II to a less energetic level in photosystem I.
- <em>When the excited electrons leave photosystem II, they are replaced by new electrons extracted from the water molecules. </em>
- Luminous energy absorbed move the electrons from the photosystem I to another electron acceptor, from where they get transported again and used to produce NADPH molecules.
- <em>When electrons leave Photosystem I, they are replaced by new electrons coming from photosystem II. </em>
- When the water molecule breaks down, hydrogen ions remain in the thylakoid lumen, from where they are pumped to the stroma by the ATP synthase.
- The released energy is used to produce ATP molecules.
- Hydrogen ions go back from the stroma to the thylakoid compartment.
The final products are oxygen, ATP, and NADPH.
--------------------------------------------
Related Link: brainly.com/question/13592516?referrer=searchResults