Answer:
Rounding to nearest hundredths gives us r=0.06.
So r is about 6%.
Step-by-step explanation:
So we are given:

where


.


Divide both sides by 1600:

Simplify:

Take the 6th root of both sides:
![\sqrt[6]{\frac{23}{16}}=1+r](https://tex.z-dn.net/?f=%5Csqrt%5B6%5D%7B%5Cfrac%7B23%7D%7B16%7D%7D%3D1%2Br)
Subtract 1 on both sides:
![\sqrt[6]{\frac{23}{16}}-1=r](https://tex.z-dn.net/?f=%5Csqrt%5B6%5D%7B%5Cfrac%7B23%7D%7B16%7D%7D-1%3Dr)
So the exact solution is ![r=\sqrt[6]{\frac{23}{16}}-1](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B6%5D%7B%5Cfrac%7B23%7D%7B16%7D%7D-1)
Most likely we are asked to round to a certain place value.
I'm going to put my value for r into my calculator.
r=0.062350864
Rounding to nearest hundredths gives us r=0.06.
Answer:
x= -2 and y= 3
Step-by-step explanation:
since x = 2y -8, substitute this in the first equation
Thus, -3(2y-8) + 2y =12
-6y+24+2y=12
-6y+2y=12-24
-4y=-12
y=3
put the value of y in the second equation,
x=2y-8
x=2(3)-8
x=6-8
x=-2
So, x=-2. y=3
Answer:
The unusual
values for this model are: 
Step-by-step explanation:
A binomial random variable
represents the number of successes obtained in a repetition of
Bernoulli-type trials with probability of success
. In this particular case,
, and
, therefore, the model is
. So, you have:









The unusual
values for this model are: 
Answer: the converse
Why: “if Q then P”, if 44 then acute