Answer:

and x=4
Step-by-step explanation:
We are given that a curve

We have to find the equation of tangent at point (4,2) on the given curve.
Let y=f(x)
Differentiate w.r.t x

By using the formula 
Substitute x=4
Slope of tangent

In given question


By comparing we get a=4
Point-slope form

Using the formula
The equation of tangent at point (4,2)




Answer:
5.5 = 5.5 = 55 1/2
6.5 = 6.5 = 66 1/2
Step-by-step explanation:
Answer:
(15,595, 16,805)
Step-by-step explanation:
We have to:
m = 16.2, sd = 3.75, n = 150
m is the mean, sd is the standard deviation and n is the sample size.
the degree of freedom would be:
n - 1 = 150 - 1 = 149
df = 149
at 95% confidence level the t is:
alpha = 1 - 95% = 1 - 0.95 = 0.05
alpha / 2 = 0.05 / 2 = 0.025
now well for t alpha / 2 (0.025) and df (149) = t = 1,976
the margin of error = E = t * sd / (n ^ (1/2))
replacing:
E = 1,976 * 3.75 / (150 ^ (1/2))
E = 0.605
The 95% confidence interval estimate of the popilation mean is:
m - E <u <m + E
16.2 - 0.605 <u <16.2 + 0.605
15,595 <u <16,805
(15,595, 16,805)
Answer:
value of x = 5.8 mm
Step-by-step explanation:
We have given,
Two right triangles EDH and EDG.
In right triangle EDH, EH = 56mm , DH = 35 mm
Using Pythagoras theorem we can find ED.
i.e EH² = ED²+DH²
56²=ED²+35²
ED²=56²-35²
ED = √(56²-35²) = 7√39 = 43.71 mm
Now, Consider right triangle EDG
Here, EG=44.8mm , GD = x+4 and ED = 7√39
Again using Pythagoras theorem,
EG² = ED² + DG²
44.8²= (7√39)²+ (x+4)²
(x+4)² = 44.8² - (7√39)²
x+4 = √(44.8² - (7√39)²)
x+4 = 9.8
or x = 9.8 - 4 = 5.8 mm
Hence we got the value of x = 5.8 mm
Answer:
So basically the mean is the average number.
Step-by-step explanation:
add all of them then divide by 6 (aka how many fractions)