For the first one false false and the second on is true true
Using the midline property;





The sum of the first four terms of the sequence is 22.
In this question,
The formula of sum of linear sequence is

The sum of the first ten terms of a linear sequence is 145
⇒ 
⇒ 145 = 5 (2a+9d)
⇒ 
⇒ 29 = 2a + 9d ------- (1)
The sum of the next ten term is 445, so the sum of first twenty terms is
⇒ 145 + 445
⇒ 
⇒ 590 = 10 (2a + 19d)
⇒ 
⇒ 59 = 2a + 19d -------- (2)
Now subtract (2) from (1),
⇒ 30 = 10d
⇒ d = 
⇒ d = 3
Substitute d in (1), we get
⇒ 29 = 2a + 9(3)
⇒ 29 = 2a + 27
⇒ 29 - 27 = 2a
⇒ 2 = 2a
⇒ a = 
⇒ a = 1
Thus, sum of first four terms is
⇒ 
⇒ 
⇒ S₄ = 2(2+9)
⇒ S₄ = 2(11)
⇒ S₄ = 22.
Hence we can conclude that the sum of the first four terms of the sequence is 22.
Learn more about sum of sequence of n terms here
brainly.com/question/20385181
#SPJ4
Answer:
f(-3) = -12
g(-2) = -19
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Functions
- Function Notation
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
f(x) = 3x - 3
g(x) = 3x³ + 5
f(-3) is <em>x</em> = -3 for function f(x)
g(-2) is <em>x</em> = -2 for function g(x)
<u>Step 2: Evaluate</u>
f(-3)
- Substitute in <em>x</em> [Function f(x)]: f(-3) = 3(-3) - 3
- Multiply: f(-3) = -9 - 3
- Subtract: f(-3) = -12
g(-2)
- Substitute in <em>x</em> [Function g(x)]: g(-2) = 3(-2)³ + 5
- Exponents: g(-2) = 3(-8) + 5
- Multiply: g(-2) = -24 + 5
- Add: g(-2) = -19