Given parameters:
Midpoint of AB = M(3, -1)
Coordinates of A = (5,1)
Unknown:
Coordinates of B = ?
Solution:
To find the mid point of any line, we use the expression below;
and ![y_{m} = \frac{y_{1} + y_{2} }{2}](https://tex.z-dn.net/?f=y_%7Bm%7D%20%20%3D%20%5Cfrac%7By_%7B1%7D%20%2B%20y_%7B2%7D%20%20%7D%7B2%7D)
where
and
= coordinates of the mid points = 3 and -1
x₁ = 5 and y₁ = 1
x₂ = ? and y₂ = ?
Now let us input the variables and solve,
3 =
and -1 = ![\frac{1 + y_{2} }{2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%20%2B%20y_%7B2%7D%20%7D%7B2%7D)
5 + x₂ = 6 -2 = 1 + y₂
x₂ = 1 y₂ = -2 -1 = -3
The coordinates of B = 1, -3
Hello There!
The correct answer would be "B" this is because we are taking 6 and multiply it by our x column which is the "in" column and adding 1 to what we get.
Answer:
I dopnt know
Step-by-step explanation:
Im asking the same question lol
Answer:
blixburgyyyyy
Step-by-step explanation:
uwuuuuw<em><u>#</u></em><em><u>c</u></em><em><u>a</u></em><em><u>r</u></em><em><u>e</u></em><em><u>o</u></em><em><u>n</u></em><em><u>l</u></em><em><u>e</u></em><em><u>a</u></em><em><u>e</u></em><em><u>n</u></em><em><u>i</u></em><em><u>n</u></em><em><u>g</u></em><em><u>p</u></em><em><u>r</u></em><em><u>o</u></em><em><u>a</u></em><em><u>c</u></em><em><u>s</u></em><em><u>e</u></em><em><u>s</u></em><em><u>s</u></em>
You go up 4 times and go to the left 2 times so the slope would be 4/-2