1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iren2701 [21]
3 years ago
9

Please help me with these two questions

Mathematics
1 answer:
KonstantinChe [14]3 years ago
4 0

Answer:

#1 is 60°, #2 is 55°

Step-by-step explanation:

all angles in a triangle add up to 180° so u can just subtract from that for the missing angles. :)

You might be interested in
The volume of an oblique pyramid with a square base is V units3 and the height is h units. Which expression represents the area
givi [52]

Answer:

Area of the base of the pyramid = V/h

Step-by-step explanation:

Mathematically, we know that the volume of the pyramid can be calculated by multiplying the area of the base by the height of the pyramid

Now using the variables in the question;

V = area of base * height of pyramid

Area of base = V/height of pyramid

Area of base = V/h

3 1
3 years ago
The quotient of three times a number and 4 is at least -16
vladimir1956 [14]
Ok to solve this just write it out how it sounds, like so.

3x/4\geq-16

Hope this helps!=)
4 0
3 years ago
Find the slope of each line.<br> А<br> B<br> с<br> A)<br> A<br> B)<br> C)
cluponka [151]

Answer: Ola

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Sin4x.sin5x+sin4x.sin3x-sin2x.sinx=0
andreev551 [17]

Recall the angle sum identity for cosine:

cos(<em>x</em> + <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) - sin(<em>x</em>) sin(<em>y</em>)

cos(<em>x</em> - <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) + sin(<em>x</em>) sin(<em>y</em>)

==>   sin(<em>x</em>) sin(<em>y</em>) = 1/2 (cos(<em>x</em> - <em>y</em>) - cos(<em>x</em> + <em>y</em>))

Then rewrite the equation as

sin(4<em>x</em>) sin(5<em>x</em>) + sin(4<em>x</em>) sin(3<em>x</em>) - sin(2<em>x</em>) sin(<em>x</em>) = 0

1/2 (cos(-<em>x</em>) - cos(9<em>x</em>)) + 1/2 (cos(<em>x</em>) - cos(7<em>x</em>)) - 1/2 (cos(<em>x</em>) - cos(3<em>x</em>)) = 0

1/2 (cos(9<em>x</em>) - cos(<em>x</em>)) + 1/2 (cos(7<em>x</em>) - cos(3<em>x</em>)) = 0

sin(5<em>x</em>) sin(-4<em>x</em>) + sin(5<em>x</em>) sin(-2<em>x</em>) = 0

-sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

Recall the double angle identity for sine:

sin(2<em>x</em>) = 2 sin(<em>x</em>) cos(<em>x</em>)

Rewrite the equation again as

sin(5<em>x</em>) (2 sin(2<em>x</em>) cos(2<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) sin(2<em>x</em>) (2 cos(2<em>x</em>) + 1) = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   2 cos(2<em>x</em>) + 1 = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   cos(2<em>x</em>) = -1/2

sin(5<em>x</em>) = 0   ==>   5<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   5<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   5<em>x</em> = 2<em>nπ</em>   <u>or</u>   5<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = 2<em>nπ</em>/5   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/5

sin(2<em>x</em>) = 0   ==>   2<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   2<em>x</em> = 2<em>nπ</em>   <u>or</u>   2<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = <em>nπ</em>   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/2

cos(2<em>x</em>) = -1/2   ==>   2<em>x</em> = arccos(-1/2) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -arccos(-1/2) + 2<em>nπ</em>

… … … … … …    ==>   2<em>x</em> = 2<em>π</em>/3 + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -2<em>π</em>/3 + 2<em>nπ</em>

… … … … … …    ==>   <em>x</em> = <em>π</em>/3 + <em>nπ</em>   <u>or</u>   <em>x</em> = -<em>π</em>/3 + <em>nπ</em>

<em />

(where <em>n</em> is any integer)

5 0
3 years ago
Can someone help me with this question please. I'll give the brainliest answer to whoever helps me.
Doss [256]

Answer: \sqrt[5]{y}

I realize its probably not the largest readable font. If you are having trouble reading it, it is the square root of y; however, there is a tiny little 5 in the upper left corner to indicate a fifth root. So you would read it out as "the fifth root of y"

The rule I'm using is

x^{1/n} = \sqrt[n]{x}

and the more general rule we could use is

x^{m/n} = \sqrt[n]{x^m}

where m = 1. This rule helps convert from rational exponent form (aka fractional exponents) to radical form.

5 0
3 years ago
Other questions:
  • In mathematics class, 24 students received an A on the third test, which is 150% of the students who received an A on the second
    10·1 answer
  • I HAVE BEEN TRYING TO GET THIS ANSWER AND NO ONE WILL HELP ME:( PLEASE HELP!! GREATLY APPRECIATED!
    6·1 answer
  • Find last year's salary if after a 6% pay raise this year's salary is $36,040
    9·1 answer
  • 1 yogurt cost 55p how many can be bought for £5
    12·1 answer
  • What two numbers add to make 36 with one of the numbers being exactly twice the other?
    8·1 answer
  • Select the two values of x that are roots of this equation.x2 + 3x – 5 = 0
    8·1 answer
  • Given the figure below, which statement correctly completes the following?
    12·2 answers
  • The midpoint of QR is (4, -1).<br> Q = (3.1)<br> What are the coordinates of point R?
    9·1 answer
  • Mathematical Statistics with Applications Help Homework
    6·1 answer
  • The figure below is composed of eight circles, seven small circles and one large circle containing them all. Neighboring circles
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!