Coterminal angles are different angles that have the same terminal side.
A positive angle has one turn more around so it has a measure of 100°+360° = 460°.
A negative angle will have a measure that is represented in clockwise rotation and be equal to 100° - 360° = -260°.
We can sketch an angle of measure 100°, a positive coterminal angle and a negative coterminal angle as:
Where is the table? I need to see a table to give the answer
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em> </em><em>⤴</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em>
Answer:
D) x = 4, y = -2, z = 3
Step-by-step explanation:
x = 3z − 5
2x + 2z = y + 16
2(3z - 5) + 2z = y + 16
6z - 10 + 2z = y + 16
8z = y + 26 ---> (A)
7x − 5z = 3y + 19
7(3z - 5) - 5z = 3y + 19
21z - 35 - 5z = 3y + 19
16z = 3y + 54 ---> (B)
8z = y + 26
16z = 3y + 54
2(y + 26) = 3y + 54
2y + 52 = 3y + 54
y = -2
8z = -2 + 26
8z = 24
z = 3
x = 3(3) - 5
x = 4