Sequence: 5/2, 5/4, 5/8, 5/16
a8=?
a1=5/2
a2=5/4
a3=5/8
a4=5/16
a2/a1=(5/4)/(5/2)=(5/4)*(2/5)=(5*2)/(4*5)=2/4=1/2
a3/a2=(5/8)/(5/4)=(5/8)*(4/5)=(5*4)/(8*5)=4/8=1/2
a4/a3=(5/16)/(5/8)=(5/16)*(8/5)=(5*8)/(16*5)=8/16=1/2
Ratio: r=a2/a1=a3/a2=a4/a3→r=1/2
an=a1*r^(n-1)
a1=5/2, r=1/2
an=(5/2)*(1/2)^(n-1)
an=(5/2)*[1^(n-1)/2^(n-1)]
an=(5/2)*[1/2^(n-1)]
an=(5*1)/[2*2^(n-1)]
an=5/2^(1+n-1)
an=5/2^n
n=8→a8=5/2^8
a8=5/256
Answers:
The formula for the general term or nth term for the sequence is an=5/2^n
a8=5/256
Set y=ax+b pass (7,-9) (5,6)
=》-9=7a+b
6=5a+b
=》2a=-15
a=-15/2
b=6-5a=6+37.5=43.5
=》y= -15/2(x)+43.5
2y+15x=87
A) $6.17 each X 4 poster boards = $24.68 total
B) $200.20 total / 4 lights = $50.05
C) $200.20 on lights + $24.68 on poster boards = $224.88 spent in total
$300 available - $224.88 spent = $75.12 left over to spend
Answer: True
Step-by-step explanation: I made a picture and it adds up: