The number of animals in a population is 775, and it increases by of 51% each year.
1 answer:
Answer(a):
Exponential growth formula is given by
![A=P(1+r)^t](https://tex.z-dn.net/?f=A%3DP%281%2Br%29%5Et)
Where preset population = P= 775
Rate of increase = r = 51% = 0.51
t= number of years
A= Future value.
Plug these values into above formula:
![A=775(1+0.51)^t](https://tex.z-dn.net/?f=A%3D775%281%2B0.51%29%5Et)
![A=775(1.51)^t](https://tex.z-dn.net/?f=A%3D775%281.51%29%5Et)
Hence required exponential function is ![A=775(1.51)^t](https://tex.z-dn.net/?f=A%3D775%281.51%29%5Et)
Answer(b):
plug t=10 years
![A=775(1.51)^t=775(1.51)^{10}=775(61.6267795034)=47760.7541151](https://tex.z-dn.net/?f=A%3D775%281.51%29%5Et%3D775%281.51%29%5E%7B10%7D%3D775%2861.6267795034%29%3D47760.7541151)
which is approx 47761.
Answer(c):
Plug A=1150
![1150=775(1.51)^t](https://tex.z-dn.net/?f=1150%3D775%281.51%29%5Et)
![\frac{1150}{775}=(1.51)^t](https://tex.z-dn.net/?f=%5Cfrac%7B1150%7D%7B775%7D%3D%281.51%29%5Et)
![\ln(\frac{1150}{775})=t*\ln(1.51)](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7B1150%7D%7B775%7D%29%3Dt%2A%5Cln%281.51%29)
![0.394654192004=t*0.412109650827](https://tex.z-dn.net/?f=0.394654192004%3Dt%2A0.412109650827)
0.957643654334=t
Which is approx 1 year.
You might be interested in
Answer:
9280
Step-by-step explanation:
8000 x .16 + 8000
Your solution would be x<25
10(1/2x + 6) = 8
5x + 60 = 8
5x = 8 - 60
5x = - 52
x = -52/5
Answer:
idk
Step-by-step explanation:
Step-by-step explanation:
![A=2πrh+2π {r}^{2}](https://tex.z-dn.net/?f=A%3D2%CF%80rh%2B2%CF%80%20%7Br%7D%5E%7B2%7D%20)
![= 2\pi.r(r + h)](https://tex.z-dn.net/?f=%20%3D%202%5Cpi.r%28r%20%2B%20h%29)
= 2π(14).(14+29)
=2π .14.43
![2 \times \frac{22}{7} \times 14 \times 43](https://tex.z-dn.net/?f=2%20%5Ctimes%20%20%5Cfrac%7B22%7D%7B7%7D%20%20%5Ctimes%2014%20%5Ctimes%2043)
![= 2 \times 22 \times 2 \times 43](https://tex.z-dn.net/?f=%20%3D%202%20%5Ctimes%2022%20%5Ctimes%202%20%5Ctimes%2043)
=3784 mm²