Answer:
The application of scientific knowledge to solve problems or create new products is inter dependant with curiosity
The equation for compound interest is:
Where r is the interest rate and n is the number of times per year it's applied. Annually n = 1 and 7% interest r = 0.07 The quarterly rate 2% is already quartered 0.02 = r/n .
You can see that Alexander is incorrect. A quarterly compound interest rate of 2% will accrue more interest than a 7% compound annual interest rate.
1.7% compound quarterly Hope this helps:)
Answer:

General Formulas and Concepts:
<u>Algebra I</u>
- Exponential Rule [Rewrite]:

<u>Calculus</u>
Limits
- Right-Side Limit:

Limit Rule [Variable Direct Substitution]: 
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integrals
Integration Constant C
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Multiplied Constant]: 
U-Substitution
U-Solve
Improper Integrals
Exponential Integral Function: 
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Integrate Pt. 1</u>
- [Integral] Rewrite [Exponential Rule - Rewrite]:

- [Integral] Rewrite [Improper Integral]:

<u>Step 3: Integrate Pt. 2</u>
<em>Identify variables for u-substitution.</em>
- Set:

- Differentiate [Basic Power Rule]:

- [Derivative] Rewrite:

<em>Rewrite u-substitution to format u-solve.</em>
- Rewrite <em>du</em>:

<u>Step 4: Integrate Pt. 3</u>
- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] Substitute in variables:

- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] Substitute [Exponential Integral Function]:
![\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7B%5Cfrac%7B1%7D%7Bxe%5E%7Bx%5E2%7D%7D%20%5C%2C%20dx%20%3D%20%5Clim_%7Ba%20%5Cto%200%5E%2B%7D%20%5Cfrac%7B1%7D%7B2%7D%5BEi%28u%29%5D%20%5Cbigg%7C%20%5Climits%5E1_a)
- Back-Substitute:
![\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7B%5Cfrac%7B1%7D%7Bxe%5E%7Bx%5E2%7D%7D%20%5C%2C%20dx%20%3D%20%5Clim_%7Ba%20%5Cto%200%5E%2B%7D%20%5Cfrac%7B1%7D%7B2%7D%5BEi%28-x%5E2%29%5D%20%5Cbigg%7C%20%5Climits%5E1_a)
- Evaluate [Integration Rule - FTC 1]:
![\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7B%5Cfrac%7B1%7D%7Bxe%5E%7Bx%5E2%7D%7D%20%5C%2C%20dx%20%3D%20%5Clim_%7Ba%20%5Cto%200%5E%2B%7D%20%5Cfrac%7B1%7D%7B2%7D%5BEi%28-1%29%20-%20Ei%28a%29%5D)
- Simplify:

- Evaluate limit [Limit Rule - Variable Direct Substitution]:

∴
diverges.
Topic: Multivariable Calculus
Answer:
$12.72 or $25.44
Step-by-step explanation:
if he buys 2 tickets that are $12 each. half of 12 is 6 so you will have to pay 12 plus tax(6%). to find tax you would multiply 12 x .06 which would be $12.72. if it say the tickets are half off from $24 being $12 each then the answer would be $25.44. the question dosent specify that.
hope i helped
Answer:
52 should be the answer
Step-by-step explanation:
first, love the parathesis. subtract 7-2
second 3 raised to the second power
third times 3 raised to the third power by 5 the answer a few u substrates 7-2
fourth 14 divide 2
finally I would add (14/2) 7 + 45 (which is 9 times 5)
read through it carefully by the end if the problem, you should have 52 as the ans