1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
uysha [10]
3 years ago
11

Shelly invested $1,000 at a rate of 5% interest per year. Which equation models the value of the investment, V, after t years?

Mathematics
1 answer:
Nana76 [90]3 years ago
8 0

Answer:

Step-by-step explanation:

You don't say whether this is compound interest or simple interest.

I will assume it's compounding that interests you.

The appropriate formula is

A = P(1 + r)^t, where r is the interest rate as a decimal fraction, t is the time in years, and P is the original amount.  Thus:

A = $1000·(1 + 0.05)^t, or  A = $1000·(1.05)^t

Please note:  There were apparently possible answer choices.  Next time, please be sure to list such choices.  Thank you.

You might be interested in
The application of scientific knowledge to solve problems or create new products.
Alla [95]

Answer:


The application of scientific knowledge to solve problems or create new products is inter dependant with curiosity


8 0
3 years ago
Read 2 more answers
3. Alexander deposited money into his retirement account that is compounded annually at an interest rate of 7%. Alexander though
Akimi4 [234]
The equation for compound interest is: 


Where r is the interest rate and n is the number of times per year it's applied. Annually n = 1 and 7% interest r = 0.07 The quarterly rate 2% is already quartered 0.02 = r/n . 


You can see that Alexander is incorrect. A quarterly compound interest rate of 2% will accrue more interest than a 7% compound annual interest rate. 


1.7% compound quarterly Hope this helps:)
5 0
3 years ago
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
Fandango has movie tickets on sale for 1\2 price. You buy 2 $12 tickets and you must pay 6% sales tax. What is your total cost a
Colt1911 [192]

Answer:

$12.72 or $25.44

Step-by-step explanation:

if he buys 2 tickets that are $12 each. half of 12 is 6 so you will have to pay 12 plus tax(6%). to find tax you would multiply 12 x .06 which would be $12.72. if it say the tickets are half off from $24 being $12 each then the answer would be $25.44. the question  dosent specify that.

hope i helped

8 0
3 years ago
How would I organize the calculation
Viefleur [7K]

Answer:

52 should be the answer

Step-by-step explanation:

first, love the parathesis. subtract 7-2

second 3 raised to the second power

third times 3 raised to the third power by 5 the answer a few u substrates 7-2

fourth 14 divide 2

finally I would add (14/2) 7 + 45 (which is 9 times 5)

read through it carefully by the end if the problem, you should have 52 as the ans

6 0
2 years ago
Other questions:
  • Please help! Will mark the brainliest!
    8·1 answer
  • What factor makes the number sentence true 7 x 4 equals blank x 7
    15·2 answers
  • What is the equation for an explicit formula
    15·1 answer
  • Problem 7-12 don't understand it so can I have answer please.
    5·1 answer
  • A recipe calls for 1/2 lb of flour for 1 batch. How many batches can be made with 1/4 lb?
    11·2 answers
  • Between x=2 and x=3, which function has the largest average rate of change?
    7·1 answer
  • The torch has been passed to a new generation of Americans what does it mean ​
    5·1 answer
  • What is the answer?<br> -2x + 5y = -1<br> 3x + 2y =11
    13·1 answer
  • Urgent please help answer 10 a thanksssss
    6·1 answer
  • . Solve for the missing value (x).
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!