To get the area, the formula is 2l x 2w = a
so the formula will be like this:
(x)(x+x/4)=180
where,
x is the width
x+x/4 is the height
180 is the area
(x)(x+x/4)=180
[4(x)][4(x+x/4)]=180(4) multiply all sides by 4 to remove the fraction
(4x)(4x+x)=720
(4x)(5x)=720 simplify
20x^2=720 multiply 4x and 5x
20x^2=720 get the sq root of both sides
4.47x=26.83 divide by 4.47 to get the value of x
x=6
the width is 6 sq inches
the length is 7.5 sq inches
[(2)(6)][(2)(7.5)]=180
(12)(15)=180
180=180
Answer:
f(x) = 6x^3 + 3x^2 - 3x - 7
is a polynomial function
degree 3
number of terms 4
leading coefficient 6
Answer:
x = 11
Step-by-step explanation:
6x - 21 = 3x + 12
6x - 3x = 21 + 12
3x = 33
x = 33/3
x = 11
Answer:
Step-by-step explanation:
Total share = 4 + 5 = 9

Answer:
Bias for the estimator = -0.56
Mean Square Error for the estimator = 6.6311
Step-by-step explanation:
Given - A normally distributed random variable with mean 4.5 and standard deviation 7.6 is sampled to get two independent values, X1 and X2. The mean is estimated using the formula (3X1 + 4X2)/8.
To find - Determine the bias and the mean squared error for this estimator of the mean.
Proof -
Let us denote
X be a random variable such that X ~ N(mean = 4.5, SD = 7.6)
Now,
An estimate of mean, μ is suggested as

Now
Bias for the estimator = E(μ bar) - μ
= 
= 
= 
= 
= 
= 3.9375 - 4.5
= - 0.5625 ≈ -0.56
∴ we get
Bias for the estimator = -0.56
Now,
Mean Square Error for the estimator = E[(μ bar - μ)²]
= Var(μ bar) + [Bias(μ bar, μ)]²
= 
= 
= ![\frac{1}{64} ( [{3Var(X_{1}) + 4Var(X_{2})] }) + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%28%20%5B%7B3Var%28X_%7B1%7D%29%20%2B%204Var%28X_%7B2%7D%29%5D%20%20%7D%29%20%2B%200.3136)
= ![\frac{1}{64} [{3(57.76) + 4(57.76)}] } + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%5B%7B3%2857.76%29%20%2B%204%2857.76%29%7D%5D%20%20%7D%20%2B%200.3136)
= ![\frac{1}{64} [7(57.76)}] } + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%5B7%2857.76%29%7D%5D%20%20%7D%20%2B%200.3136)
= ![\frac{1}{64} [404.32] } + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%5B404.32%5D%20%20%7D%20%2B%200.3136)
= 
= 6.6311
∴ we get
Mean Square Error for the estimator = 6.6311