X = first venture, y = second venture, z = third venture
x + y + z = 15,000
x + z = y + 7000
3x + 2y + 2z = 39,000
these are ur equations.....
x + y + z = 15,000
x - y + z = 7000
--------------------add
2x + 2z = 22,000
x + y + z = 15,000....multiply by -2
3x + 2y + 2z = 39,000
-------------------
-2x - 2y - 2z = - 30,000 (result of multiplying by -2)
3x + 2y + 2z = 39,000
------------------add
x = 9,000
2x + 2z = 22,000
2(9000) + 2z = 22000
18,000 + 2z = 22000
2z = 22000 - 18000
2z = 4000
z = 4000/2
z = 2,000
x + y + z = 15,000
9000 + y + 2000 = 15,000
11,000 + y = 15,000
y = 15,000 - 11,000
y = 4,000
first venture (x) = 9,000 <==
second venture (y) = 4,000 <==
third venture (z) = 2,000 <==
Answer: x = -5
Step-by-step explanation:
First convert 3/4 to decimal= 0.75
0.75 (8x - 4) = 7x + 2
6x - 3 = 7x + 2
Transpose 7x from right hand side to the left hand side
6x - 7x = 2 + 3
-x = 5
x = -5
I hope this helps.
Prove:
Using mathemetical induction:
P(n) = 
for n=1
P(n) =
= 6
It is divisible by 2 and 3
Now, for n=k, 
P(k) = 
Assuming P(k) is divisible by 2 and 3:
Now, for n=k+1:
P(k+1) = 
P(k+1) = 
P(k+1) = 
Since, we assumed that P(k) is divisible by 2 and 3, therefore, P(k+1) is also
divisible by 2 and 3.
Hence, by mathematical induction, P(n) =
is divisible by 2 and 3 for all positive integer n.
Answer:
The answer is 1
Step-by-step explanation:
-50+50=1