4209Answer:
Step-by-step explanation:
Magic
Answer:
Step-by-step explanation:
Solution by substitution method
3x-4y=8
and 18x-5y=10
Suppose,
3x-4y=8→(1)
and 18x-5y=10→(2)
Taking equation (1), we have
3x-4y=8
⇒3x=4y+8
⇒x=(
4y+8)/
3 →(3)
Putting x=
(4y+8
)/3 in equation (2), we get
18x-5y=10
18(
(4y+8)
/3) -5y=10
⇒24y+48-5y=10
⇒19y+48=10
⇒19y=10-48
⇒19y= -38
⇒y=-
38
/19
⇒y= -2→(4)
Now, Putting y=-2 in equation (3), we get
x=4y+8
x=
(4(-2)+8)
/3
⇒x=
(-8+8)/
3
⇒x=
0/
3
⇒x=0
∴x=0 and y= -2
Answer:
alesiabrack089 you are completely and utterly the bestest.
Step-by-step explanation:
La diferencia entre los ángulos <em>AOB</em> y <em>COD</em> del sistema de tres ángulos <em>consecutivos</em> es igual a 25°.
La medida del ángulo BOC pertenenciente al sistema de tres ángulos consecutivos es igual a 20°.
<h3>Cómo analizar tres ángulos consecutivos</h3>
Por la geometría Euclídea conocemos que un conjunto de ángulos cuando comparten entre cada par de ángulos vecinos comparten el mismo vértice y la misma semirrecta.
De acuerdo con el enunciado, tenemos las siguientes condiciones:
∠AOB + ∠BOC = 125° (1)
∠BOC + ∠COD = 100° (2)
Por (1) y (2) tenemos las siguiente identidad:
∠AOB - 25° = ∠COD
∠AOB - ∠COD = 25°
La diferencia entre los ángulos <em>AOB</em> y <em>COD</em> del sistema de tres ángulos <em>consecutivos</em> es igual a 25°. 
En el segundo caso, tenemos el siguiente sistema:
∠AOB = ∠BOC + ∠COD (3)
∠AOB + ∠BOC - ∠COD = 40° (4)
Por (3) y (4) tenemos la siguiente identidad:
2 · ∠BOC = 40°
∠BOC = 20°
La medida del ángulo BOC pertenenciente al sistema de tres ángulos consecutivos es igual a 20°.
Para aprender más sobre ángulos, invitamos cordialmente a ver esta pregunta verificada: brainly.com/question/21209282
It would be 3.87,to the nearest hundred cause the real length is √15