Answer: ![\bold{\dfrac{7}{8}=87.5\%}](https://tex.z-dn.net/?f=%5Cbold%7B%5Cdfrac%7B7%7D%7B8%7D%3D87.5%5C%25%7D)
<u>Step-by-step explanation:</u>
"At least one girl" means P(1 girl) + P(2 girls) + P(3 girls) or 1 - P(all boys)
I will use the latter: 1 - P(all boys)
P(all boys) = ![\dfrac{1}{2}\times \dfrac{1}{2}\times \dfrac{1}{2}=\dfrac{1}{8}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B2%7D%5Ctimes%20%5Cdfrac%7B1%7D%7B2%7D%5Ctimes%20%5Cdfrac%7B1%7D%7B2%7D%3D%5Cdfrac%7B1%7D%7B8%7D)
![1 - P(all\ boys) \quad = \quad 1-\dfrac{1}{8}\quad =\large\boxed{\dfrac{7}{8}}](https://tex.z-dn.net/?f=1%20-%20P%28all%5C%20boys%29%20%5Cquad%20%3D%20%5Cquad%201-%5Cdfrac%7B1%7D%7B8%7D%5Cquad%20%3D%5Clarge%5Cboxed%7B%5Cdfrac%7B7%7D%7B8%7D%7D)
Answer:
(-4, -7)
Step-by-step explanation:
21y=-147
y=-7
2x-5x(-7)=27
x=-4
Answer:
m=28
n=21
Step-by-step explanation:
3×4=12
7×4=28
28×1.75=49
12×1.75=21
Answer:
The expected value for a student to spend on lunch each day = $5.18
Step-by-step explanation:
Given the data:
Number of students______$ spent
2 students______________$10
1 student________________$8
12 students______________$6
23 students______________$5
8 students_______________$4
4 students_______________$3
Sample size, n = 50.
Let's first find the value on each amount spent with the formula:
Therefore,
For $10:
For $8:
l
For $6:
For $5:
For $4:
For $3:
To find the expected value a student spends on lunch each day, let's add all the values together.
Expected value =
$0.4 + $0.16 + 1.44 +$2.3 + $0.64 + $0.24
= $5.18
Therefore, the expected value for a student to spend on lunch each day is $5.18
No that is false very false