You have to start with low power, move to medium and then go to high. You have to be careful and use fine focus to make sure you don’t scratch the slide or the lens
Adenylate cyclases (ACs) are the membrane-bound glycoproteins that convert ATP to cAMP and pyrophosphate.
When activated by G-protein Gs, adenylate cyclases (ACs), which are membrane-bound glycoproteins, catalyze the synthesis of cAMP from ATP.
Different AC isoforms are widely expressed in various tissues that participate in regulatory systems in response to particular stimuli.
Humans have 9 different AC isoforms, with AC5 and AC6 thought to be particularly important for cardiac activities.
Nitric oxide has an impact on the activity of AC6, hence the protein's nitrosylation may control how it works. However, little is known about the structural variables that affect nitrosylation in ACs and how they relate to G's.
We predict the cysteines that are prone to nitrosylation using this 3D model, and we use virtual ligand screening to find potential new AC6 ligands.
According to our model, the AC-Gs interface's Cys174 in G's and Cys1004 in AC6 (subunit C2) are two potential residues that could experience reversible nitrosylation.
Learn more about glycoproteins here brainly.com/question/9507947
#SPJ4
Answer:
Option (d).
Explanation:
Equilibrium may be defined as the state of the equality on both the sides of the reaction. Different types of equilibrium are physical equilibrium, chemical equilibrium and dynamic equilibrium.
Chemical equilibrium may be defined as the equilibrium in which the reactants and products concentration remains constant with time. The rate of the backward reaction is equal to the rate of forward reaction.
Thus, the correct answer is option (d).
I have no idea
You play RL?
A substance that can dissolve other substances