Answer:
D
Step-by-step explanation:
hope this helps
Probably the subsitution method
y=1/2x
subsitute that fr y
2x+3(1/2x)=28
2x+3/2x=28
times 2 both sides
4x+3x=56
7x=56
divide by 7 both sides
x=8
sub back
y=1/2x
y=1/2(8)
y=4
(x,y)
(8,4)
Answer:
) See annex
b) See annex
x = 0,5 ft
y = 2 ft and
V = 2 ft³
Step-by-step explanation: See annex
c) V = y*y*x
d-1) y = 3 - 2x
d-2) V = (3-2x)* ( 3-2x)* x ⇒ V = (3-2x)²*x
V(x) =( 9 + 4x² - 12x )*x ⇒ V(x) = 9x + 4x³ - 12x²
Taking derivatives
V¨(x) = 9 + 12x² - 24x
V¨(x) = 0 ⇒ 12x² -24x +9 = 0 ⇒ 4x² - 8x + 3 = 0
Solving for x (second degree equation)
x =[ -b ± √b²- 4ac ] / 2a
we get x₁ = 1,5 and x₂ = 0,5
We look at y = 3 - 2x and see that the value x₂ is the only valid root
then
x = 0,5 ft
y = 2 ft and
V = 0,5*2*2
V = 2 ft³
Answer:
Step-by-step explanation:
Perimeter of rectangle = 208 m
2*(l + w) = 208 {divide both sides by 2}
l +w = 208/2
l +w = 104
l = 104 - w
Area of rectangle = 2415 square meters
l*w = 2415
Substitute l = 104 - w in the above equation,
(104 - w ) *w = 2415
104w - w² = 2415
0 = 2415 - 104w + w²
w² - 104w + 2415 = 0
Sum = -104
Product = 2415
Factors = (-69) , (-35)
w² - 35w - 69w + (-69)*(-35) = 0
w(w - 35) - 69(w - 35) = 0
(w -35)(w -69)
w - 35 = 0 ; w -69 = 0
w = 35 ; w = 69
The dimensions of the building: 35 , 69
Answer:rhombus
Step-by-step explanation: