Is there supposed to be an image?
The pigments have a similar
structure of 40 carbon atoms covalently bonded in a chain. Carotenoids contain oxygen atoms in their chemical structure (retinyl functional group) while
xanthophyll does not. This makes carotenoids more non-polar compared to xanthophylls,
hence move farthest in chromatography
paper using a nonpolar mobile phase. Chlorophyll
pigment, on the other hand, has chlorin rings (which are larger) as functional
units hence move slowly in chromatography.
Photosynthetic rates
can be measured by either the amount of
oxygen they consume per particular time period
or the amount of carbon dioxide produced per particular time period. This
is conducted while immersed in water so
as to measure bubble rate formation in case of oxygen production or the change
in water pH in the case of carbon dioxide consumption.
When autumn approaches, the amount
sunlight received by the plant is reduced due to longer night than days. Deciduous trees have adapted by losing
chlorophyll a and b pigments (most important in photosynthesis)
during this time. This leaves a higher amount of the other red and yellow pigments hence making the leaves change from
green to yellow-red.
It is believed that this
is the result of an ancient endosymbiotic
relationship between a protist and a
eukaryotic cell. The protist generates energy
that the eukaryotic can utilize in its growth and reproduction while
the protist is sheltered. This relationship became obligatory symbiosis over
time.
Hello!
Meiosis occurs in humans, animals, plants and fungi, and its a sexual type of reproduction. The daughter cells are different, cause the chromosomes are mixed. Mitosis is a asexual type of reproduction and the daughter cells are identical.
hugs!
Tundra and deserts are two biomes of the world which represent the extreme form of climates. Tudra is the coldest region of the earth while desert represent the hottest zones of the earth. But whats the most common thing in these extreme zones is that they receive very less precipitation throughout the year (less than 25 cm).
Therefore, flora of the desert and Tundra have some special adaptations to survive without sufficient amount of water.
Let's see what are those:
- The height of plants growing in Tundra is very less like lesser than 1 foot. The short structure of the plants helps them to get more heat from the dark soil and helps to survive freezing. The short height lets them stay protected from harsh effects of cold or snow.
- The plants in tundra grow in groups or clumps that helps them in surviving the attacks of ice particles or snow balls. For example: lousewort and Arctic crocus.
- Some flora of tundra has ability to grow even in the complete lack of water for several years.This is because they have waxy layers that cover the leaves and store maximum water for the periods of no availability.
- Some plants have hair on the surface of stems that trap maximum heat and protect the plant from heat and extreme forms of wind. For example: Arctic crocus.
- Desert plants not only have physiological but also morphological adaptations to survive heat stress and shortage of water. Their stems, roots and leaves are fleshy and help them to store water for a large period of time. For example: Cactus
- Many desert plants like <em>xerophytic bromeliads</em> and <em>epiphytic orchids </em>contain a system alternate of photosynthesis called CAM (Crassulacean Acid Metabolism). This process helps the plant to open the stomata at night for exchange of gases and accumulate CO2. In day, stomata are closed and the CO2 is used for photosynthesis. This is an adaptation, because during night when temperature is low, CAM plants lose less water as compared to what normal plants lose during day.
- Some plants have extremely large roots that absorb maximum water from soil and compensate the plant's loss of water due to heat. For example: Phreatophytes.
- Some Perennial plants have adapted the mechanism to stay in condition of rest or dormant during extreme heat. They get back to normal life when weather become a bit better.
Hope it helps! :)
The correct answer is: Inserting a gene into a pea plant to make them resistant to insects